Flume1.5.0的安装、部署、简单应用(含伪分布式、与hadoop2.2.0、hbase0.96的案例)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 原文地址:http://www.cnblogs.com/lion.net/p/3903197.html 目录:   一、什么是Flume?     1)flume的特点     2)flume的可靠性     3)flume的可恢复性     4)flume 的 一些核心概念   二、...

原文地址:http://www.cnblogs.com/lion.net/p/3903197.html

目录:
  一、什么是Flume?
    1)flume的特点
    2)flume的可靠性
    3)flume的可恢复性
    4)flume 的 一些核心概念
  二、flume的官方网站在哪里?
  三、在哪里下载?
  四、如何安装?
  五、flume的案例
    1)案例1:Avro
    2)案例2:Spool
    3)案例3:Exec
    4)案例4:Syslogtcp
    5)案例5:JSONHandler
    6)案例6:Hadoop sink
    7)案例7:File Roll Sink
    8)案例8:Replicating Channel Selector
    9)案例9:Multiplexing Channel Selector
    10)案例10:Flume Sink Processors
    11)案例11:Load balancing Sink Processor
    12)案例12:Hbase sink
 
 
  一、什么是Flume?
  flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 cloudera。但随着 FLume 功能的扩展,Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 Flume OG 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 Flume-728,对 Flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码架构,重构后的版本统称为 Flume NG(next generation);改动的另一原因是将 Flume 纳入 apache 旗下,cloudera Flume 改名为 Apache Flume。
 
flume的特点:
  flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。
  flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。
 
flume的可靠性 
  当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Besteffort(数据发送到接收方后,不会进行确认)。
 
flume的可恢复性:
  还是靠Channel。推荐使用FileChannel,事件持久化在本地文件系统里(性能较差)。 
 
   f lume的一些核心概念:
  1. Agent使用JVM 运行Flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。
  2. Client生产数据,运行在一个独立的线程。
  3. Source从Client收集数据,传递给Channel。
  4. Sink从Channel收集数据,运行在一个独立线程。
  5. Channel连接 sources 和 sinks ,这个有点像一个队列。
  6. Events可以是日志记录、 avro 对象等。
 
  Flume以agent为最小的独立运行单位。一个agent就是一个JVM。单agent由Source、Sink和Channel三大组件构成,如下图:

 

  值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes,这也正是NB之处如下图所示:

 

 

  二、flume的官方网站在哪里?
  http://flume.apache.org/

 

  三、在哪里下载?

  http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.gz

 

  四、如何安装?
    1)将下载的flume包,解压到/home/hadoop目录中,你就已经完成了50%:)简单吧

    2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
root@m1: /home/hadoop/flume-1 .5.0-bin # cp conf/flume-env.sh.template conf/flume-env.sh
root@m1: /home/hadoop/flume-1 .5.0-bin # vi conf/flume-env.sh
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
 
# If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced
# during Flume startup.
 
# Enviroment variables can be set here.
 
JAVA_HOME= /usr/lib/jvm/java-7-oracle
 
# Give Flume more memory and pre-allocate, enable remote monitoring via JMX
#JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote"
 
# Note that the Flume conf directory is always included in the classpath.
#FLUME_CLASSPATH=""

 

    3)验证是否安装成功

1
2
3
4
5
6
7
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng version
Flume 1.5.0
Source code repository: https: //git-wip-us .apache.org /repos/asf/flume .git
Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97
Compiled by hshreedharan on Wed May  7 14:49:18 PDT 2014
From source  with checksum a01fe726e4380ba0c9f7a7d222db961f
root@m1: /home/hadoop #
    出现上面的信息,表示安装成功了
 
 
  五、flume的案例
    1)案例1:Avro
    Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制。
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop #vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 4141
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
      c)创建指定文件
1
root@m1: /home/hadoop # echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00
      d)使用avro-client发送文件
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00
      f)在m1的控制台,可以看到以下信息,注意最后一行:
1
2
3
4
5
6
7
8
9
10
root@m1: /home/hadoop/flume-1 .5.0-bin /conf # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
Info: Sourcing environment configuration script /home/hadoop/flume-1 .5.0-bin /conf/flume-env .sh
Info: Including Hadoop libraries found via ( /home/hadoop/hadoop-2 .2.0 /bin/hadoop ) for  HDFS access
Info: Excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-api-1 .7.5.jar from classpath
Info: Excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar from classpath
...
2014-08-10 10:43:25,112 (New I /O   worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND
2014-08-10 10:43:25,112 (New I /O   worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED
2014-08-10 10:43:25,112 (New I /O   worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected.
2014-08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64                hello world }
 
    2)案例2:Spool
    Spool监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点:
    1) 拷贝到spool目录下的文件不可以再打开编辑。
    2) spool目录下不可包含相应的子目录
 
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir = /home/hadoop/flume-1 .5.0-bin /logs
a1.sources.r1.fileHeader = true
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -Dflume.root.logger=INFO,console
      c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录
1
root@m1: /home/hadoop # echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log
      d)在m1的控制台,可以看到以下相关信息:
1
2
3
4
5
6
7
8
9
10
11
14 /08/10  11:37:13 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:13 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:14 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file  /home/hadoop/flume-1 .5.0-bin /logs/spool_text .log to /home/hadoop/flume-1 .5.0-bin /logs/spool_text .log.COMPLETED
14 /08/10  11:37:14 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:14 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:14 INFO sink.LoggerSink: Event: { headers:{ file = /home/hadoop/flume-1 .5.0-bin /logs/spool_text .log} body: 73 70 6F 6F 6C 20 74 65 73 74 31                spool test1 }
14 /08/10  11:37:15 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:15 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:16 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:16 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:17 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
 
    3)案例3:Exec
    EXEC 执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容
 
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = exec
a1.sources.r1.channels = c1
a1.sources.r1. command  = tail  -F /home/hadoop/flume-1 .5.0-bin /log_exec_tail
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console
      c)生成足够多的内容在文件里
1
root@m1: /home/hadoop # for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done
      e)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2014-08-10 10:59:25,513 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74       exec  tail  test  }
2014-08-10 10:59:34,535 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74       exec  tail  test  }
2014-08-10 11:01:40,557 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31                   exec  tail1 }
2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 32                   exec  tail2 }
2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 33                   exec  tail3 }
2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 34                   exec  tail4 }
2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 35                   exec  tail5 }
2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 36                   exec  tail6 }
....
....
....
2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36                exec  tail96 }
2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37                exec  tail97 }
2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38                exec  tail98 }
2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39                exec  tail99 }
2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30             exec  tail100 }
 
    4)案例4:Syslogtcp
    Syslogtcp监听TCP的端口做为数据源
 
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console
      c)测试产生syslog
1
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140
      d)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
14 /08/10  11:41:45 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration file : /home/hadoop/flume-1 .5.0-bin /conf/syslog_tcp .conf
14 /08/10  11:41:45 INFO conf.FlumeConfiguration: Added sinks: k1 Agent: a1
14 /08/10  11:41:45 INFO conf.FlumeConfiguration: Processing:k1
14 /08/10  11:41:45 INFO conf.FlumeConfiguration: Processing:k1
14 /08/10  11:41:45 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for  agents: [a1]
14 /08/10  11:41:45 INFO node.AbstractConfigurationProvider: Creating channels
14 /08/10  11:41:45 INFO channel.DefaultChannelFactory: Creating instance of channel c1 type  memory
14 /08/10  11:41:45 INFO node.AbstractConfigurationProvider: Created channel c1
14 /08/10  11:41:45 INFO source .DefaultSourceFactory: Creating instance of source  r1, type  syslogtcp
14 /08/10  11:41:45 INFO sink.DefaultSinkFactory: Creating instance of sink: k1, type : logger
14 /08/10  11:41:45 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1]
14 /08/10  11:41:45 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source :org.apache.flume. source .SyslogTcpSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@6538b14 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }
14 /08/10  11:41:45 INFO node.Application: Starting Channel c1
14 /08/10  11:41:45 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : CHANNEL, name: c1: Successfully registered new MBean.
14 /08/10  11:41:45 INFO instrumentation.MonitoredCounterGroup: Component type : CHANNEL, name: c1 started
14 /08/10  11:41:45 INFO node.Application: Starting Sink k1
14 /08/10  11:41:45 INFO node.Application: Starting Source r1
14 /08/10  11:41:45 INFO source .SyslogTcpSource: Syslog TCP Source starting...
14 /08/10  11:42:15 WARN source .SyslogUtils: Event created from Invalid Syslog data.
14 /08/10  11:42:15 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
 
    5)案例5:JSONHandler
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = org.apache.flume. source .http.HTTPSource
a1.sources.r1.port = 8888
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console
      c)生成JSON 格式的POST request
1
root@m1: /home/hadoop # curl -X POST -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888
      d)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
14 /08/10  11:49:59 INFO node.Application: Starting Channel c1
14 /08/10  11:49:59 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : CHANNEL, name: c1: Successfully registered new MBean.
14 /08/10  11:49:59 INFO instrumentation.MonitoredCounterGroup: Component type : CHANNEL, name: c1 started
14 /08/10  11:49:59 INFO node.Application: Starting Sink k1
14 /08/10  11:49:59 INFO node.Application: Starting Source r1
14 /08/10  11:49:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog
14 /08/10  11:49:59 INFO mortbay.log: jetty-6.1.26
14 /08/10  11:50:00 INFO mortbay.log: Started SelectChannelConnector@0.0.0.0:8888
14 /08/10  11:50:00 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SOURCE, name: r1: Successfully registered new MBean.
14 /08/10  11:50:00 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started
14 /08/10  12:14:32 INFO sink.LoggerSink: Event: { headers:{b=b1, a=a1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79    idoall.org_body }
 
    6)案例6:Hadoop sink
    其中关于hadoop2.2.0部分的安装部署,请参考文章《 ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs: //m1 :9000 /user/flume/syslogtcp
a1.sinks.k1.hdfs.filePrefix = Syslog
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -Dflume.root.logger=INFO,console
      c)测试产生syslog
1
root@m1: /home/hadoop # echo "hello idoall flume -> hadoop testing one" | nc localhost 5140
      d)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14 /08/10  12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : CHANNEL, name: c1: Successfully registered new MBean.
14 /08/10  12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type : CHANNEL, name: c1 started
14 /08/10  12:20:39 INFO node.Application: Starting Sink k1
14 /08/10  12:20:39 INFO node.Application: Starting Source r1
14 /08/10  12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SINK, name: k1: Successfully registered new MBean.
14 /08/10  12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type : SINK, name: k1 started
14 /08/10  12:20:39 INFO source .SyslogTcpSource: Syslog TCP Source starting...
14 /08/10  12:21:46 WARN source .SyslogUtils: Event created from Invalid Syslog data.
14 /08/10  12:21:49 INFO hdfs.HDFSSequenceFile: writeFormat = Writable, UseRawLocalFileSystem = false
14 /08/10  12:21:49 INFO hdfs.BucketWriter: Creating hdfs: //m1 :9000 /user/flume/syslogtcp//Syslog .1407644509504.tmp
14 /08/10  12:22:20 INFO hdfs.BucketWriter: Closing hdfs: //m1 :9000 /user/flume/syslogtcp//Syslog .1407644509504.tmp
14 /08/10  12:22:20 INFO hdfs.BucketWriter: Close tries incremented
14 /08/10  12:22:20 INFO hdfs.BucketWriter: Renaming hdfs: //m1 :9000 /user/flume/syslogtcp/Syslog .1407644509504.tmp to hdfs: //m1 :9000 /user/flume/syslogtcp/Syslog .1407644509504
14 /08/10  12:22:20 INFO hdfs.HDFSEventSink: Writer callback called.
      e)在m1上再打开一个窗口,去hadoop上检查文件是否生成
1
2
3
4
5
root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp
Found 1 items
-rw-r--r--   3 root supergroup        155 2014-08-10 12:22 /user/flume/syslogtcp/Syslog .1407644509504
root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1407644509504
SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable^;>Gv$hello idoall flume -> hadoop testing one
 
    7)案例7:File Roll Sink
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5555
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = file_roll
a1.sinks.k1.sink.directory = /home/hadoop/flume-1 .5.0-bin /logs
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -Dflume.root.logger=INFO,console
      c)测试产生log
1
2
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5555
root@m1: /home/hadoop # echo "hello idoall.org syslog 2" | nc localhost 5555
      d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件
1
2
3
4
5
6
7
8
9
10
root@m1: /home/hadoop # ll /home/hadoop/flume-1.5.0-bin/logs
总用量 272
drwxr-xr-x 3 root root   4096 Aug 10 12:50 ./
drwxr-xr-x 9 root root   4096 Aug 10 10:59 ../
-rw-r--r-- 1 root root     50 Aug 10 12:49 1407646164782-1
-rw-r--r-- 1 root root      0 Aug 10 12:49 1407646164782-2
-rw-r--r-- 1 root root      0 Aug 10 12:50 1407646164782-3
root@m1: /home/hadoop # cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2
hello idoall.org syslog
hello idoall.org syslog 2
 
    8)案例8:Replicating Channel Selector
     Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。
 
     这次我们需要用到m1,m2两台机器
 
      a)在m1创建replicating_Channel_Selector配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector. type  = replicating
 
# Describe the sink
a1.sinks.k1. type  = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname  = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type  = avro
a1.sinks.k2.channel = c2
a1.sinks.k2. hostname  = m2
a1.sinks.k2.port = 5555
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
a1.channels.c2. type  = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
      b)在m1创建replicating_Channel_Selector_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      c)在m1上将2个配置文件复制到m2上一份
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf<br>
      d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
      e)然后在m1或m2的任意一台机器上,测试产生syslog
1
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140
      f)在m1和m2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:
1
2
3
4
5
6
7
8
14 /08/10  14:08:18 INFO ipc.NettyServer: Connection to /192 .168.1.51:46844 disconnected.
14 /08/10  14:08:52 INFO ipc.NettyServer: [ id : 0x90f8fe1f, /192 .168.1.50:35873 => /192 .168.1.50:5555] OPEN
14 /08/10  14:08:52 INFO ipc.NettyServer: [ id : 0x90f8fe1f, /192 .168.1.50:35873 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  14:08:52 INFO ipc.NettyServer: [ id : 0x90f8fe1f, /192 .168.1.50:35873 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.50:35873
14 /08/10  14:08:59 INFO ipc.NettyServer: [ id : 0xd6318635, /192 .168.1.51:46858 => /192 .168.1.50:5555] OPEN
14 /08/10  14:08:59 INFO ipc.NettyServer: [ id : 0xd6318635, /192 .168.1.51:46858 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  14:08:59 INFO ipc.NettyServer: [ id : 0xd6318635, /192 .168.1.51:46858 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.51:46858
14 /08/10  14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
 
    9)案例9:Multiplexing Channel Selector
      a)在m1创建Multiplexing_Channel_Selector配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
 
# Describe/configure the source
a1.sources.r1. type  = org.apache.flume. source .http.HTTPSource
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector. type  = multiplexing
 
a1.sources.r1.selector.header = type
#映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。
a1.sources.r1.selector.mapping.baidu = c1
a1.sources.r1.selector.mapping.ali = c2
a1.sources.r1.selector.default = c1
 
# Describe the sink
a1.sinks.k1. type  = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname  = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type  = avro
a1.sinks.k2.channel = c2
a1.sinks.k2. hostname  = m2
a1.sinks.k2.port = 5555
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
a1.channels.c2. type  = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
      b)在m1创建Multiplexing_Channel_Selector_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      c)将2个配置文件复制到m2上一份
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf  root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
      d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
      e)然后在m1或m2的任意一台机器上,测试产生syslog
1
root@m1: /home/hadoop # curl -X POST -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]' http://localhost:5140
      f)在m1的sink窗口,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14 /08/10  14:32:21 INFO node.Application: Starting Sink k1
14 /08/10  14:32:21 INFO node.Application: Starting Source r1
14 /08/10  14:32:21 INFO source .AvroSource: Starting Avro source  r1: { bindAddress: 0.0.0.0, port: 5555 }...
14 /08/10  14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SOURCE, name: r1: Successfully registered new MBean.
14 /08/10  14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started
14 /08/10  14:32:21 INFO source .AvroSource: Avro source  r1 started.
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0xcf00eea6, /192 .168.1.50:35916 => /192 .168.1.50:5555] OPEN
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0xcf00eea6, /192 .168.1.50:35916 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0xcf00eea6, /192 .168.1.50:35916 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.50:35916
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x432f5468, /192 .168.1.51:46945 => /192 .168.1.50:5555] OPEN
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x432f5468, /192 .168.1.51:46945 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x432f5468, /192 .168.1.51:46945 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.51:46945
14 /08/10  14:34:11 INFO sink.LoggerSink: Event: { headers:{ type =baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31             idoall_TEST1 }
14 /08/10  14:34:57 INFO sink.LoggerSink: Event: { headers:{ type =qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33             idoall_TEST3 }
      g)在m2的sink窗口,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14 /08/10  14:32:27 INFO node.Application: Starting Sink k1
14 /08/10  14:32:27 INFO node.Application: Starting Source r1
14 /08/10  14:32:27 INFO source .AvroSource: Starting Avro source  r1: { bindAddress: 0.0.0.0, port: 5555 }...
14 /08/10  14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SOURCE, name: r1: Successfully registered new MBean.
14 /08/10  14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started
14 /08/10  14:32:27 INFO source .AvroSource: Avro source  r1 started.
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0x7c2f0aec, /192 .168.1.50:38104 => /192 .168.1.51:5555] OPEN
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0x7c2f0aec, /192 .168.1.50:38104 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0x7c2f0aec, /192 .168.1.50:38104 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.50:38104
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x3d36f553, /192 .168.1.51:48599 => /192 .168.1.51:5555] OPEN
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x3d36f553, /192 .168.1.51:48599 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x3d36f553, /192 .168.1.51:48599 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.51:48599
14 /08/10  14:34:33 INFO sink.LoggerSink: Event: { headers:{ type =ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32             idoall_TEST2 }
    可以看到,根据header中不同的条件分布到不同的channel上
 
    10)案例10:Flume Sink Processors
    failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。
 
      a)在m1创建Flume_Sink_Processors配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
 
#这个是配置failover的关键,需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
#处理的类型是failover
a1.sinkgroups.g1.processor. type  = failover
#优先级,数字越大优先级越高,每个sink的优先级必须不相同
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
#设置为10秒,当然可以根据你的实际状况更改成更快或者很慢
a1.sinkgroups.g1.processor.maxpenalty = 10000
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector. type  = replicating
 
 
# Describe the sink
a1.sinks.k1. type  = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname  = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type  = avro
a1.sinks.k2.channel = c2
a1.sinks.k2. hostname  = m2
a1.sinks.k2.port = 5555
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
a1.channels.c2. type  = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
      b)在m1创建Flume_Sink_Processors_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      c)将2个配置文件复制到m2上一份
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf  root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
      d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
      e)然后在m1或m2的任意一台机器上,测试产生log
1
root@m1: /home/hadoop # echo "idoall.org test1 failover" | nc localhost 5140
      f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:
1
2
3
4
5
14 /08/10  15:02:46 INFO ipc.NettyServer: Connection to /192 .168.1.51:48692 disconnected.
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0x09a14036, /192 .168.1.51:48704 => /192 .168.1.51:5555] OPEN
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0x09a14036, /192 .168.1.51:48704 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0x09a14036, /192 .168.1.51:48704 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.51:48704
14 /08/10  15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
      g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据:
1
root@m1: /home/hadoop # echo "idoall.org test2 failover" | nc localhost 5140
      h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据:
1
2
3
4
5
6
14 /08/10  15:02:46 INFO ipc.NettyServer: Connection to /192 .168.1.51:47036 disconnected.
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0xbcf79851, /192 .168.1.51:47048 => /192 .168.1.50:5555] OPEN
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0xbcf79851, /192 .168.1.51:47048 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0xbcf79851, /192 .168.1.51:47048 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.51:47048
14 /08/10  15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
14 /08/10  15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
      i)我们再在m2的sink窗口中,启动sink:
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
      j)输入两批测试数据:
1
root@m1: /home/hadoop # echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140
     k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
14 /08/10  15:09:47 INFO node.Application: Starting Sink k1
14 /08/10  15:09:47 INFO node.Application: Starting Source r1
14 /08/10  15:09:47 INFO source .AvroSource: Starting Avro source  r1: { bindAddress: 0.0.0.0, port: 5555 }...
14 /08/10  15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SOURCE, name: r1: Successfully registered new MBean.
14 /08/10  15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started
14 /08/10  15:09:47 INFO source .AvroSource: Avro source  r1 started.
14 /08/10  15:09:54 INFO ipc.NettyServer: [ id : 0x96615732, /192 .168.1.51:48741 => /192 .168.1.51:5555] OPEN
14 /08/10  15:09:54 INFO ipc.NettyServer: [ id : 0x96615732, /192 .168.1.51:48741 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  15:09:54 INFO ipc.NettyServer: [ id : 0x96615732, /192 .168.1.51:48741 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.51:48741
14 /08/10  15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
14 /08/10  15:10:43 INFO ipc.NettyServer: [ id : 0x12621f9a, /192 .168.1.50:38166 => /192 .168.1.51:5555] OPEN
14 /08/10  15:10:43 INFO ipc.NettyServer: [ id : 0x12621f9a, /192 .168.1.50:38166 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  15:10:43 INFO ipc.NettyServer: [ id : 0x12621f9a, /192 .168.1.50:38166 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.50:38166
14 /08/10  15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
14 /08/10  15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
 
    11)案例11:Load balancing Sink Processor
    load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。
 
      a)在m1创建Load_balancing_Sink_Processors配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1
 
#这个是配置Load balancing的关键,需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor. type  = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = round_robin
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1
 
 
# Describe the sink
a1.sinks.k1. type  = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname  = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type  = avro
a1.sinks.k2.channel = c1
a1.sinks.k2. hostname  = m2
a1.sinks.k2.port = 5555
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
      b)在m1创建Load_balancing_Sink_Processors_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      c)将2个配置文件复制到m2上一份
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf  root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
      d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
      e)然后在m1或m2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上
1
2
3
4
root@m1: /home/hadoop # echo "idoall.org test1" | nc localhost 5140
root@m1: /home/hadoop # echo "idoall.org test2" | nc localhost 5140
root@m1: /home/hadoop # echo "idoall.org test3" | nc localhost 5140
root@m1: /home/hadoop # echo "idoall.org test4" | nc localhost 5140
      f)在m1的sink窗口,可以看到以下信息:
1
2
14 /08/10  15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
14 /08/10  15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
      g)在m2的sink窗口,可以看到以下信息:
1
2
14 /08/10  15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
14 /08/10  15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
    说明轮询模式起到了作用。
 
    12)案例12:Hbase sink
 
      a)在测试之前,请先参考《 ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动
 
      b)然后将以下文件复制到flume中:
1
2
3
4
5
6
7
8
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/protobuf-java-2 .5.0.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-client-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-common-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-protocol-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-server-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop2-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib @@@
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/htrace-core-2 .04.jar /home/hadoop/flume-1 .5.0-bin /lib
      c)确保test_idoall_org表在hbase中已经存在,test_idoall_org表的格式以及字段请参考《 ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》中关于hbase部分的建表代码。
 
      d)在m1创建hbase_simple配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = logger
a1.sinks.k1. type  = hbase
a1.sinks.k1.table = test_idoall_org
a1.sinks.k1.columnFamily = name
a1.sinks.k1.column = idoall
a1.sinks.k1.serializer =  org.apache.flume.sink.hbase.RegexHbaseEventSerializer
a1.sinks.k1.channel = memoryChannel
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      e)启动flume agent
1
/home/hadoop/flume-1 .5.0-bin /bin/flume-ng  agent -c . -f /home/hadoop/flume-1 .5.0-bin /conf/hbase_simple .conf -n a1 -Dflume.root.logger=INFO,console
      f)测试产生syslog
1
root@m1: /home/hadoop # echo "hello idoall.org from flume" | nc localhost 5140
      g)这时登录到hbase中,可以发现新数据已经插入
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
root@m1: /home/hadoop # /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell
2014-08-10 16:09:48,984 INFO  [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available
HBase Shell; enter 'help<RETURN>'  for  list of supported commands.
Type "exit<RETURN>"  to leave the HBase Shell
Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2014
 
hbase(main):001:0> list
TABLE                                                                                                                                                                                                                 
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in  [jar: file : /home/hadoop/hbase-0 .96.2-hadoop2 /lib/slf4j-log4j12-1 .6.4.jar! /org/slf4j/impl/StaticLoggerBinder .class]
SLF4J: Found binding in  [jar: file : /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar! /org/slf4j/impl/StaticLoggerBinder .class]
SLF4J: See http: //www .slf4j.org /codes .html #multiple_bindings for an explanation.
hbase2hive_idoall                                                                                                                                                                                                     
hive2hbase_idoall                                                                                                                                                                                                     
test_idoall_org                                                                                                                                                                                                       
3 row(s) in  2.6880 seconds
 
=> [ "hbase2hive_idoall" , "hive2hbase_idoall" , "test_idoall_org" ]
hbase(main):002:0> scan "test_idoall_org"
ROW                                                    COLUMN+CELL                                                                                                                                                    
  10086                                                 column=name:idoall, timestamp=1406424831473, value=idoallvalue                                                                                                 
1 row(s) in  0.0550 seconds
 
hbase(main):003:0> scan "test_idoall_org"
ROW                                                    COLUMN+CELL                                                                                                                                                    
  10086                                                 column=name:idoall, timestamp=1406424831473, value=idoallvalue                                                                                                 
  1407658495588-XbQCOZrKK8-0                            column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume                                                                                
2 row(s) in  0.0200 seconds
 
hbase(main):004:0> quit
    经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧。
相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
3月前
|
分布式计算 Java Hadoop
java使用hbase、hadoop报错举例
java使用hbase、hadoop报错举例
118 4
|
2月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
78 4
|
2月前
|
SQL 分布式计算 Hadoop
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
34 3
|
2月前
|
分布式计算 Hadoop Shell
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
59 3
|
2月前
|
SQL 分布式计算 Hadoop
Hadoop-34 HBase 安装部署 单节点配置 hbase-env hbase-site 超详细图文 附带配置文件
Hadoop-34 HBase 安装部署 单节点配置 hbase-env hbase-site 超详细图文 附带配置文件
90 2
|
2月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
58 2
|
2月前
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
48 2
|
6月前
|
分布式计算 Java Hadoop
杨校老师课堂之分布式数据库HBase的部署和基本操作
杨校老师课堂之分布式数据库HBase的部署和基本操作
64 0
|
3月前
|
分布式计算 Hadoop Devops
Hadoop集群配置https实战案例
本文提供了一个实战案例,详细介绍了如何在Hadoop集群中配置HTTPS,包括生成私钥和证书文件、配置keystore和truststore、修改hdfs-site.xml和ssl-client.xml文件,以及重启Hadoop集群的步骤,并提供了一些常见问题的故障排除方法。
88 3
Hadoop集群配置https实战案例
|
4月前
|
存储 分布式计算 算法
探索Hadoop的三种运行模式:单机模式、伪分布式模式和完全分布式模式
在配置Hadoop集群之前,了解这三种模式的特点、适用场景和配置差异是非常重要的。这有助于用户根据个人需求和资源情况,选择最适合自己的Hadoop运行模式。在最初的学习和开发阶段,单机模式和伪分布式模式能为用户提供便利和成本效益。进而,当用户要处理大规模数据集时,完全分布式模式将是理想的选择。
251 2

相关实验场景

更多