Flume1.5.0的安装、部署、简单应用(含伪分布式、与hadoop2.2.0、hbase0.96的案例)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 原文地址:http://www.cnblogs.com/lion.net/p/3903197.html 目录:   一、什么是Flume?     1)flume的特点     2)flume的可靠性     3)flume的可恢复性     4)flume 的 一些核心概念   二、...

原文地址http://www.cnblogs.com/lion.net/p/3903197.html

目录
  一、什么是Flume?
    1)flume的特点
    2)flume的可靠性
    3)flume的可恢复性
    4)flume 的 一些核心概念
  二、flume的官方网站在哪里
  三、在哪里下载
  四、如何安装
  五、flume的案例
    1)案例1Avro
    2)案例2Spool
    3)案例3Exec
    4)案例4Syslogtcp
    5)案例5JSONHandler
    6)案例6Hadoop sink
    7)案例7File Roll Sink
    8)案例8Replicating Channel Selector
    9)案例9Multiplexing Channel Selector
    10)案例10Flume Sink Processors
    11)案例11Load balancing Sink Processor
    12)案例12Hbase sink
 
 
  一、什么是Flume?
  flume 作为 cloudera 开发的实时日志收集系统受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OGoriginal generation属于 cloudera。但随着 FLume 功能的扩展Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来尤其是在 Flume OG 的最后一个发行版本 0.94.0 中日志传输不稳定的现象尤为严重为了解决这些问题2011 年 10 月 22 号cloudera 完成了 Flume-728对 Flume 进行了里程碑式的改动重构核心组件、核心配置以及代码架构重构后的版本统称为 Flume NGnext generation改动的另一原因是将 Flume 纳入 apache 旗下cloudera Flume 改名为 Apache Flume。
 
flume的特点
  flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方用于收集数据;同时Flume提供对数据进行简单处理并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。
  flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位它携带日志数据(字节数组形式)并且携带有头信息这些Event由Agent外部的Source生成当Source捕获事件后会进行特定的格式化然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。
 
flume的可靠性 
  当节点出现故障时日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障从强到弱依次分别为end-to-end收到数据agent首先将event写到磁盘上当数据传送成功后再删除如果数据发送失败可以重新发送。Store on failure这也是scribe采用的策略当数据接收方crash时将数据写到本地待恢复后继续发送Besteffort数据发送到接收方后不会进行确认。
 
flume的可恢复性
  还是靠Channel。推荐使用FileChannel事件持久化在本地文件系统里(性能较差)。 
 
   f lume的一些核心概念
  1. Agent使用JVM 运行Flume。每台机器运行一个agent但是可以在一个agent中包含多个sources和sinks。
  2. Client生产数据运行在一个独立的线程。
  3. Source从Client收集数据传递给Channel。
  4. Sink从Channel收集数据运行在一个独立线程。
  5. Channel连接 sources 和 sinks 这个有点像一个队列。
  6. Events可以是日志记录、 avro 对象等。
 
  Flume以agent为最小的独立运行单位。一个agent就是一个JVM。单agent由Source、Sink和Channel三大组件构成如下图

 

  值得注意的是Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件非常灵活。比如Channel可以把事件暂存在内存里也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase甚至是另外一个Source等等。Flume支持用户建立多级流也就是说多个agent可以协同工作并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes这也正是NB之处如下图所示:

 

 

  二、flume的官方网站在哪里
  http://flume.apache.org/

 

  三、在哪里下载

  http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.gz

 

  四、如何安装
    1)将下载的flume包解压到/home/hadoop目录中你就已经完成了50%简单吧

    2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
root@m1: /home/hadoop/flume-1 .5.0-bin # cp conf/flume-env.sh.template conf/flume-env.sh
root@m1: /home/hadoop/flume-1 .5.0-bin # vi conf/flume-env.sh
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
 
# If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced
# during Flume startup.
 
# Enviroment variables can be set here.
 
JAVA_HOME= /usr/lib/jvm/java-7-oracle
 
# Give Flume more memory and pre-allocate, enable remote monitoring via JMX
#JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote"
 
# Note that the Flume conf directory is always included in the classpath.
#FLUME_CLASSPATH=""

 

    3)验证是否安装成功

1
2
3
4
5
6
7
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng version
Flume 1.5.0
Source code repository: https: //git-wip-us .apache.org /repos/asf/flume .git
Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97
Compiled by hshreedharan on Wed May  7 14:49:18 PDT 2014
From source  with checksum a01fe726e4380ba0c9f7a7d222db961f
root@m1: /home/hadoop #
    出现上面的信息表示安装成功了
 
 
  五、flume的案例
    1)案例1Avro
    Avro可以发送一个给定的文件给FlumeAvro 源使用AVRO RPC机制。
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop #vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 4141
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
      c)创建指定文件
1
root@m1: /home/hadoop # echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00
      d)使用avro-client发送文件
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00
      f)在m1的控制台可以看到以下信息注意最后一行
1
2
3
4
5
6
7
8
9
10
root@m1: /home/hadoop/flume-1 .5.0-bin /conf # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
Info: Sourcing environment configuration script /home/hadoop/flume-1 .5.0-bin /conf/flume-env .sh
Info: Including Hadoop libraries found via ( /home/hadoop/hadoop-2 .2.0 /bin/hadoop ) for  HDFS access
Info: Excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-api-1 .7.5.jar from classpath
Info: Excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar from classpath
...
2014-08-10 10:43:25,112 (New I /O   worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND
2014-08-10 10:43:25,112 (New I /O   worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED
2014-08-10 10:43:25,112 (New I /O   worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected.
2014-08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64                hello world }
 
    2)案例2Spool
    Spool监测配置的目录下新增的文件并将文件中的数据读取出来。需要注意两点
    1) 拷贝到spool目录下的文件不可以再打开编辑。
    2) spool目录下不可包含相应的子目录
 
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir = /home/hadoop/flume-1 .5.0-bin /logs
a1.sources.r1.fileHeader = true
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -Dflume.root.logger=INFO,console
      c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录
1
root@m1: /home/hadoop # echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log
      d)在m1的控制台可以看到以下相关信息
1
2
3
4
5
6
7
8
9
10
11
14 /08/10  11:37:13 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:13 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:14 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file  /home/hadoop/flume-1 .5.0-bin /logs/spool_text .log to /home/hadoop/flume-1 .5.0-bin /logs/spool_text .log.COMPLETED
14 /08/10  11:37:14 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:14 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:14 INFO sink.LoggerSink: Event: { headers:{ file = /home/hadoop/flume-1 .5.0-bin /logs/spool_text .log} body: 73 70 6F 6F 6C 20 74 65 73 74 31                spool test1 }
14 /08/10  11:37:15 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:15 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:16 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:16 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
14 /08/10  11:37:17 INFO source .SpoolDirectorySource: Spooling Directory Source runner has shutdown .
 
    3)案例3Exec
    EXEC 执行一个给定的命令获得输出的源,如果要使用tail命令必选使得file足够大才能看到输出内容
 
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = exec
a1.sources.r1.channels = c1
a1.sources.r1. command  = tail  -F /home/hadoop/flume-1 .5.0-bin /log_exec_tail
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console
      c)生成足够多的内容在文件里
1
root@m1: /home/hadoop # for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done
      e)在m1的控制台可以看到以下信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2014-08-10 10:59:25,513 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74       exec  tail  test  }
2014-08-10 10:59:34,535 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74       exec  tail  test  }
2014-08-10 11:01:40,557 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31                   exec  tail1 }
2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 32                   exec  tail2 }
2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 33                   exec  tail3 }
2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 34                   exec  tail4 }
2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 35                   exec  tail5 }
2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 36                   exec  tail6 }
....
....
....
2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36                exec  tail96 }
2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37                exec  tail97 }
2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38                exec  tail98 }
2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39                exec  tail99 }
2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30             exec  tail100 }
 
    4)案例4Syslogtcp
    Syslogtcp监听TCP的端口做为数据源
 
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console
      c)测试产生syslog
1
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140
      d)在m1的控制台可以看到以下信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
14 /08/10  11:41:45 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration file : /home/hadoop/flume-1 .5.0-bin /conf/syslog_tcp .conf
14 /08/10  11:41:45 INFO conf.FlumeConfiguration: Added sinks: k1 Agent: a1
14 /08/10  11:41:45 INFO conf.FlumeConfiguration: Processing:k1
14 /08/10  11:41:45 INFO conf.FlumeConfiguration: Processing:k1
14 /08/10  11:41:45 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for  agents: [a1]
14 /08/10  11:41:45 INFO node.AbstractConfigurationProvider: Creating channels
14 /08/10  11:41:45 INFO channel.DefaultChannelFactory: Creating instance of channel c1 type  memory
14 /08/10  11:41:45 INFO node.AbstractConfigurationProvider: Created channel c1
14 /08/10  11:41:45 INFO source .DefaultSourceFactory: Creating instance of source  r1, type  syslogtcp
14 /08/10  11:41:45 INFO sink.DefaultSinkFactory: Creating instance of sink: k1, type : logger
14 /08/10  11:41:45 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1]
14 /08/10  11:41:45 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source :org.apache.flume. source .SyslogTcpSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@6538b14 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }
14 /08/10  11:41:45 INFO node.Application: Starting Channel c1
14 /08/10  11:41:45 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : CHANNEL, name: c1: Successfully registered new MBean.
14 /08/10  11:41:45 INFO instrumentation.MonitoredCounterGroup: Component type : CHANNEL, name: c1 started
14 /08/10  11:41:45 INFO node.Application: Starting Sink k1
14 /08/10  11:41:45 INFO node.Application: Starting Source r1
14 /08/10  11:41:45 INFO source .SyslogTcpSource: Syslog TCP Source starting...
14 /08/10  11:42:15 WARN source .SyslogUtils: Event created from Invalid Syslog data.
14 /08/10  11:42:15 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
 
    5)案例5JSONHandler
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = org.apache.flume. source .http.HTTPSource
a1.sources.r1.port = 8888
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console
      c)生成JSON 格式的POST request
1
root@m1: /home/hadoop # curl -X POST -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888
      d)在m1的控制台可以看到以下信息
1
2
3
4
5
6
7
8
9
10
11
14 /08/10  11:49:59 INFO node.Application: Starting Channel c1
14 /08/10  11:49:59 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : CHANNEL, name: c1: Successfully registered new MBean.
14 /08/10  11:49:59 INFO instrumentation.MonitoredCounterGroup: Component type : CHANNEL, name: c1 started
14 /08/10  11:49:59 INFO node.Application: Starting Sink k1
14 /08/10  11:49:59 INFO node.Application: Starting Source r1
14 /08/10  11:49:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog
14 /08/10  11:49:59 INFO mortbay.log: jetty-6.1.26
14 /08/10  11:50:00 INFO mortbay.log: Started SelectChannelConnector@0.0.0.0:8888
14 /08/10  11:50:00 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SOURCE, name: r1: Successfully registered new MBean.
14 /08/10  11:50:00 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started
14 /08/10  12:14:32 INFO sink.LoggerSink: Event: { headers:{b=b1, a=a1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79    idoall.org_body }
 
    6)案例6Hadoop sink
    其中关于hadoop2.2.0部分的安装部署请参考文章《 ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs: //m1 :9000 /user/flume/syslogtcp
a1.sinks.k1.hdfs.filePrefix = Syslog
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -Dflume.root.logger=INFO,console
      c)测试产生syslog
1
root@m1: /home/hadoop # echo "hello idoall flume -> hadoop testing one" | nc localhost 5140
      d)在m1的控制台可以看到以下信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14 /08/10  12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : CHANNEL, name: c1: Successfully registered new MBean.
14 /08/10  12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type : CHANNEL, name: c1 started
14 /08/10  12:20:39 INFO node.Application: Starting Sink k1
14 /08/10  12:20:39 INFO node.Application: Starting Source r1
14 /08/10  12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SINK, name: k1: Successfully registered new MBean.
14 /08/10  12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type : SINK, name: k1 started
14 /08/10  12:20:39 INFO source .SyslogTcpSource: Syslog TCP Source starting...
14 /08/10  12:21:46 WARN source .SyslogUtils: Event created from Invalid Syslog data.
14 /08/10  12:21:49 INFO hdfs.HDFSSequenceFile: writeFormat = Writable, UseRawLocalFileSystem = false
14 /08/10  12:21:49 INFO hdfs.BucketWriter: Creating hdfs: //m1 :9000 /user/flume/syslogtcp//Syslog .1407644509504.tmp
14 /08/10  12:22:20 INFO hdfs.BucketWriter: Closing hdfs: //m1 :9000 /user/flume/syslogtcp//Syslog .1407644509504.tmp
14 /08/10  12:22:20 INFO hdfs.BucketWriter: Close tries incremented
14 /08/10  12:22:20 INFO hdfs.BucketWriter: Renaming hdfs: //m1 :9000 /user/flume/syslogtcp/Syslog .1407644509504.tmp to hdfs: //m1 :9000 /user/flume/syslogtcp/Syslog .1407644509504
14 /08/10  12:22:20 INFO hdfs.HDFSEventSink: Writer callback called.
      e)在m1上再打开一个窗口去hadoop上检查文件是否生成
1
2
3
4
5
root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp
Found 1 items
-rw-r--r--   3 root supergroup        155 2014-08-10 12:22 /user/flume/syslogtcp/Syslog .1407644509504
root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1407644509504
SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable^;>Gv$hello idoall flume -> hadoop testing one
 
    7)案例7File Roll Sink
      a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5555
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = file_roll
a1.sinks.k1.sink.directory = /home/hadoop/flume-1 .5.0-bin /logs
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      b)启动flume agent a1
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -Dflume.root.logger=INFO,console
      c)测试产生log
1
2
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5555
root@m1: /home/hadoop # echo "hello idoall.org syslog 2" | nc localhost 5555
      d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件
1
2
3
4
5
6
7
8
9
10
root@m1: /home/hadoop # ll /home/hadoop/flume-1.5.0-bin/logs
总用量 272
drwxr-xr-x 3 root root   4096 Aug 10 12:50 ./
drwxr-xr-x 9 root root   4096 Aug 10 10:59 ../
-rw-r--r-- 1 root root     50 Aug 10 12:49 1407646164782-1
-rw-r--r-- 1 root root      0 Aug 10 12:49 1407646164782-2
-rw-r--r-- 1 root root      0 Aug 10 12:50 1407646164782-3
root@m1: /home/hadoop # cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2
hello idoall.org syslog
hello idoall.org syslog 2
 
    8)案例8Replicating Channel Selector
     Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out分别是复制和复用。在复制的情况下流的事件被发送到所有的配置通道。在复用的情况下事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。
 
     这次我们需要用到m1,m2两台机器
 
      a)在m1创建replicating_Channel_Selector配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector. type  = replicating
 
# Describe the sink
a1.sinks.k1. type  = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname  = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type  = avro
a1.sinks.k2.channel = c2
a1.sinks.k2. hostname  = m2
a1.sinks.k2.port = 5555
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
a1.channels.c2. type  = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
      b)在m1创建replicating_Channel_Selector_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      c)在m1上将2个配置文件复制到m2上一份
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf<br>
      d)打开4个窗口在m1和m2上同时启动两个flume agent
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
      e)然后在m1或m2的任意一台机器上测试产生syslog
1
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140
      f)在m1和m2的sink窗口分别可以看到以下信息,这说明信息得到了同步
1
2
3
4
5
6
7
8
14 /08/10  14:08:18 INFO ipc.NettyServer: Connection to /192 .168.1.51:46844 disconnected.
14 /08/10  14:08:52 INFO ipc.NettyServer: [ id : 0x90f8fe1f, /192 .168.1.50:35873 => /192 .168.1.50:5555] OPEN
14 /08/10  14:08:52 INFO ipc.NettyServer: [ id : 0x90f8fe1f, /192 .168.1.50:35873 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  14:08:52 INFO ipc.NettyServer: [ id : 0x90f8fe1f, /192 .168.1.50:35873 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.50:35873
14 /08/10  14:08:59 INFO ipc.NettyServer: [ id : 0xd6318635, /192 .168.1.51:46858 => /192 .168.1.50:5555] OPEN
14 /08/10  14:08:59 INFO ipc.NettyServer: [ id : 0xd6318635, /192 .168.1.51:46858 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  14:08:59 INFO ipc.NettyServer: [ id : 0xd6318635, /192 .168.1.51:46858 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.51:46858
14 /08/10  14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
 
    9)案例9Multiplexing Channel Selector
      a)在m1创建Multiplexing_Channel_Selector配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
 
# Describe/configure the source
a1.sources.r1. type  = org.apache.flume. source .http.HTTPSource
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector. type  = multiplexing
 
a1.sources.r1.selector.header = type
#映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。
a1.sources.r1.selector.mapping.baidu = c1
a1.sources.r1.selector.mapping.ali = c2
a1.sources.r1.selector.default = c1
 
# Describe the sink
a1.sinks.k1. type  = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname  = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type  = avro
a1.sinks.k2.channel = c2
a1.sinks.k2. hostname  = m2
a1.sinks.k2.port = 5555
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
a1.channels.c2. type  = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
      b)在m1创建Multiplexing_Channel_Selector_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      c)将2个配置文件复制到m2上一份
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf  root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
      d)打开4个窗口在m1和m2上同时启动两个flume agent
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
      e)然后在m1或m2的任意一台机器上测试产生syslog
1
root@m1: /home/hadoop # curl -X POST -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]' http://localhost:5140
      f)在m1的sink窗口可以看到以下信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14 /08/10  14:32:21 INFO node.Application: Starting Sink k1
14 /08/10  14:32:21 INFO node.Application: Starting Source r1
14 /08/10  14:32:21 INFO source .AvroSource: Starting Avro source  r1: { bindAddress: 0.0.0.0, port: 5555 }...
14 /08/10  14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SOURCE, name: r1: Successfully registered new MBean.
14 /08/10  14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started
14 /08/10  14:32:21 INFO source .AvroSource: Avro source  r1 started.
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0xcf00eea6, /192 .168.1.50:35916 => /192 .168.1.50:5555] OPEN
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0xcf00eea6, /192 .168.1.50:35916 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0xcf00eea6, /192 .168.1.50:35916 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.50:35916
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x432f5468, /192 .168.1.51:46945 => /192 .168.1.50:5555] OPEN
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x432f5468, /192 .168.1.51:46945 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x432f5468, /192 .168.1.51:46945 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.51:46945
14 /08/10  14:34:11 INFO sink.LoggerSink: Event: { headers:{ type =baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31             idoall_TEST1 }
14 /08/10  14:34:57 INFO sink.LoggerSink: Event: { headers:{ type =qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33             idoall_TEST3 }
      g)在m2的sink窗口可以看到以下信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14 /08/10  14:32:27 INFO node.Application: Starting Sink k1
14 /08/10  14:32:27 INFO node.Application: Starting Source r1
14 /08/10  14:32:27 INFO source .AvroSource: Starting Avro source  r1: { bindAddress: 0.0.0.0, port: 5555 }...
14 /08/10  14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SOURCE, name: r1: Successfully registered new MBean.
14 /08/10  14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started
14 /08/10  14:32:27 INFO source .AvroSource: Avro source  r1 started.
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0x7c2f0aec, /192 .168.1.50:38104 => /192 .168.1.51:5555] OPEN
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0x7c2f0aec, /192 .168.1.50:38104 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  14:32:36 INFO ipc.NettyServer: [ id : 0x7c2f0aec, /192 .168.1.50:38104 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.50:38104
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x3d36f553, /192 .168.1.51:48599 => /192 .168.1.51:5555] OPEN
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x3d36f553, /192 .168.1.51:48599 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  14:32:44 INFO ipc.NettyServer: [ id : 0x3d36f553, /192 .168.1.51:48599 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.51:48599
14 /08/10  14:34:33 INFO sink.LoggerSink: Event: { headers:{ type =ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32             idoall_TEST2 }
    可以看到根据header中不同的条件分布到不同的channel上
 
    10)案例10Flume Sink Processors
    failover的机器是一直发送给其中一个sink当这个sink不可用的时候自动发送到下一个sink。
 
      a)在m1创建Flume_Sink_Processors配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
 
#这个是配置failover的关键需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
#处理的类型是failover
a1.sinkgroups.g1.processor. type  = failover
#优先级数字越大优先级越高每个sink的优先级必须不相同
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10
#设置为10秒当然可以根据你的实际状况更改成更快或者很慢
a1.sinkgroups.g1.processor.maxpenalty = 10000
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector. type  = replicating
 
 
# Describe the sink
a1.sinks.k1. type  = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname  = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type  = avro
a1.sinks.k2.channel = c2
a1.sinks.k2. hostname  = m2
a1.sinks.k2.port = 5555
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
a1.channels.c2. type  = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
      b)在m1创建Flume_Sink_Processors_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      c)将2个配置文件复制到m2上一份
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf  root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
      d)打开4个窗口在m1和m2上同时启动两个flume agent
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
      e)然后在m1或m2的任意一台机器上测试产生log
1
root@m1: /home/hadoop # echo "idoall.org test1 failover" | nc localhost 5140
      f)因为m2的优先级高所以在m2的sink窗口可以看到以下信息而m1没有
1
2
3
4
5
14 /08/10  15:02:46 INFO ipc.NettyServer: Connection to /192 .168.1.51:48692 disconnected.
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0x09a14036, /192 .168.1.51:48704 => /192 .168.1.51:5555] OPEN
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0x09a14036, /192 .168.1.51:48704 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0x09a14036, /192 .168.1.51:48704 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.51:48704
14 /08/10  15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
      g)这时我们停止掉m2机器上的sink(ctrl+c)再次输出测试数据
1
root@m1: /home/hadoop # echo "idoall.org test2 failover" | nc localhost 5140
      h)可以在m1的sink窗口看到读取到了刚才发送的两条测试数据
1
2
3
4
5
6
14 /08/10  15:02:46 INFO ipc.NettyServer: Connection to /192 .168.1.51:47036 disconnected.
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0xbcf79851, /192 .168.1.51:47048 => /192 .168.1.50:5555] OPEN
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0xbcf79851, /192 .168.1.51:47048 => /192 .168.1.50:5555] BOUND: /192 .168.1.50:5555
14 /08/10  15:03:12 INFO ipc.NettyServer: [ id : 0xbcf79851, /192 .168.1.51:47048 => /192 .168.1.50:5555] CONNECTED: /192 .168.1.51:47048
14 /08/10  15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
14 /08/10  15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
      i)我们再在m2的sink窗口中启动sink
1
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
      j)输入两批测试数据
1
root@m1: /home/hadoop # echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140
     k)在m2的sink窗口我们可以看到以下信息因为优先级的关系log消息会再次落到m2上
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
14 /08/10  15:09:47 INFO node.Application: Starting Sink k1
14 /08/10  15:09:47 INFO node.Application: Starting Source r1
14 /08/10  15:09:47 INFO source .AvroSource: Starting Avro source  r1: { bindAddress: 0.0.0.0, port: 5555 }...
14 /08/10  15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for  type : SOURCE, name: r1: Successfully registered new MBean.
14 /08/10  15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type : SOURCE, name: r1 started
14 /08/10  15:09:47 INFO source .AvroSource: Avro source  r1 started.
14 /08/10  15:09:54 INFO ipc.NettyServer: [ id : 0x96615732, /192 .168.1.51:48741 => /192 .168.1.51:5555] OPEN
14 /08/10  15:09:54 INFO ipc.NettyServer: [ id : 0x96615732, /192 .168.1.51:48741 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  15:09:54 INFO ipc.NettyServer: [ id : 0x96615732, /192 .168.1.51:48741 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.51:48741
14 /08/10  15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
14 /08/10  15:10:43 INFO ipc.NettyServer: [ id : 0x12621f9a, /192 .168.1.50:38166 => /192 .168.1.51:5555] OPEN
14 /08/10  15:10:43 INFO ipc.NettyServer: [ id : 0x12621f9a, /192 .168.1.50:38166 => /192 .168.1.51:5555] BOUND: /192 .168.1.51:5555
14 /08/10  15:10:43 INFO ipc.NettyServer: [ id : 0x12621f9a, /192 .168.1.50:38166 => /192 .168.1.51:5555] CONNECTED: /192 .168.1.50:38166
14 /08/10  15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
14 /08/10  15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
 
    11)案例11Load balancing Sink Processor
    load balance type和failover不同的地方是load balance有两个配置一个是轮询一个是随机。两种情况下如果被选择的sink不可用就会自动尝试发送到下一个可用的sink上面。
 
      a)在m1创建Load_balancing_Sink_Processors配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf
 
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1
 
#这个是配置Load balancing的关键需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor. type  = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = round_robin
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1
 
 
# Describe the sink
a1.sinks.k1. type  = avro
a1.sinks.k1.channel = c1
a1.sinks.k1. hostname  = m1
a1.sinks.k1.port = 5555
 
a1.sinks.k2. type  = avro
a1.sinks.k2.channel = c1
a1.sinks.k2. hostname  = m2
a1.sinks.k2.port = 5555
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
      b)在m1创建Load_balancing_Sink_Processors_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
 
# Describe the sink
a1.sinks.k1. type  = logger
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      c)将2个配置文件复制到m2上一份
1
2
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf  root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
      d)打开4个窗口在m1和m2上同时启动两个flume agent
1
2
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
      e)然后在m1或m2的任意一台机器上测试产生log一行一行输入输入太快容易落到一台机器上
1
2
3
4
root@m1: /home/hadoop # echo "idoall.org test1" | nc localhost 5140
root@m1: /home/hadoop # echo "idoall.org test2" | nc localhost 5140
root@m1: /home/hadoop # echo "idoall.org test3" | nc localhost 5140
root@m1: /home/hadoop # echo "idoall.org test4" | nc localhost 5140
      f)在m1的sink窗口可以看到以下信息
1
2
14 /08/10  15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
14 /08/10  15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
      g)在m2的sink窗口可以看到以下信息
1
2
14 /08/10  15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
14 /08/10  15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
    说明轮询模式起到了作用。
 
    12)案例12Hbase sink
 
      a)在测试之前请先参考《 ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动
 
      b)然后将以下文件复制到flume中
1
2
3
4
5
6
7
8
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/protobuf-java-2 .5.0.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-client-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-common-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-protocol-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-server-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop2-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib @@@
cp  /home/hadoop/hbase-0 .96.2-hadoop2 /lib/htrace-core-2 .04.jar /home/hadoop/flume-1 .5.0-bin /lib
      c)确保test_idoall_org表在hbase中已经存在test_idoall_org表的格式以及字段请参考《 ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》中关于hbase部分的建表代码。
 
      d)在m1创建hbase_simple配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf
 
a1.sources = r1
a1.sinks = k1
a1.channels = c1
 
# Describe/configure the source
a1.sources.r1. type  = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
 
# Describe the sink
a1.sinks.k1. type  = logger
a1.sinks.k1. type  = hbase
a1.sinks.k1.table = test_idoall_org
a1.sinks.k1.columnFamily = name
a1.sinks.k1.column = idoall
a1.sinks.k1.serializer =  org.apache.flume.sink.hbase.RegexHbaseEventSerializer
a1.sinks.k1.channel = memoryChannel
 
# Use a channel which buffers events in memory
a1.channels.c1. type  = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
 
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
      e)启动flume agent
1
/home/hadoop/flume-1 .5.0-bin /bin/flume-ng  agent -c . -f /home/hadoop/flume-1 .5.0-bin /conf/hbase_simple .conf -n a1 -Dflume.root.logger=INFO,console
      f)测试产生syslog
1
root@m1: /home/hadoop # echo "hello idoall.org from flume" | nc localhost 5140
      g)这时登录到hbase中可以发现新数据已经插入
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
root@m1: /home/hadoop # /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell
2014-08-10 16:09:48,984 INFO  [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available
HBase Shell; enter 'help<RETURN>'  for  list of supported commands.
Type "exit<RETURN>"  to leave the HBase Shell
Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2014
 
hbase(main):001:0> list
TABLE                                                                                                                                                                                                                 
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in  [jar: file : /home/hadoop/hbase-0 .96.2-hadoop2 /lib/slf4j-log4j12-1 .6.4.jar! /org/slf4j/impl/StaticLoggerBinder .class]
SLF4J: Found binding in  [jar: file : /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar! /org/slf4j/impl/StaticLoggerBinder .class]
SLF4J: See http: //www .slf4j.org /codes .html #multiple_bindings for an explanation.
hbase2hive_idoall                                                                                                                                                                                                     
hive2hbase_idoall                                                                                                                                                                                                     
test_idoall_org                                                                                                                                                                                                       
3 row(s) in  2.6880 seconds
 
=> [ "hbase2hive_idoall" , "hive2hbase_idoall" , "test_idoall_org" ]
hbase(main):002:0> scan "test_idoall_org"
ROW                                                    COLUMN+CELL                                                                                                                                                    
  10086                                                 column=name:idoall, timestamp=1406424831473, value=idoallvalue                                                                                                 
1 row(s) in  0.0550 seconds
 
hbase(main):003:0> scan "test_idoall_org"
ROW                                                    COLUMN+CELL                                                                                                                                                    
  10086                                                 column=name:idoall, timestamp=1406424831473, value=idoallvalue                                                                                                 
  1407658495588-XbQCOZrKK8-0                            column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume                                                                                
2 row(s) in  0.0200 seconds
 
hbase(main):004:0> quit
    经过这么多flume的例子测试如果你全部做完后会发现flume的功能真的很强大可以进行各种搭配来完成你想要的工作俗话说师傅领进门修行在个人如何能够结合你的产品业务将flume更好的应用起来快去动手实践吧。
相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
17天前
|
消息中间件 分布式计算 Hadoop
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
32 3
|
14天前
|
存储 分布式计算 算法
探索Hadoop的三种运行模式:单机模式、伪分布式模式和完全分布式模式
在配置Hadoop集群之前,了解这三种模式的特点、适用场景和配置差异是非常重要的。这有助于用户根据个人需求和资源情况,选择最适合自己的Hadoop运行模式。在最初的学习和开发阶段,单机模式和伪分布式模式能为用户提供便利和成本效益。进而,当用户要处理大规模数据集时,完全分布式模式将是理想的选择。
40 2
|
17天前
|
分布式计算 资源调度 Hadoop
Hadoop入门基础(二):Hadoop集群安装与部署详解(超详细教程)(二)
Hadoop入门基础(二):Hadoop集群安装与部署详解(超详细教程)(二)
|
17天前
|
分布式计算 Ubuntu Hadoop
Hadoop入门基础(二):Hadoop集群安装与部署详解(超详细教程)(一)
Hadoop入门基础(二):Hadoop集群安装与部署详解(超详细教程)(一)
|
14天前
|
SQL 分布式计算 Hadoop
centos7通过CDH部署Hadoop
centos7通过CDH部署Hadoop
|
15天前
|
分布式计算 Java Linux
centos7通过Ambari2.74部署Hadoop
centos7通过Ambari2.74部署Hadoop
|
15天前
|
存储 分布式计算 监控
Hadoop在云计算环境下的部署策略
【8月更文第28天】Hadoop是一个开源软件框架,用于分布式存储和处理大规模数据集。随着云计算技术的发展,越来越多的企业开始利用云平台的优势来部署Hadoop集群,以实现更高的可扩展性、可用性和成本效益。本文将探讨如何在公有云、私有云及混合云环境下部署和管理Hadoop集群,并提供具体的部署策略和代码示例。
38 0
|
3月前
|
分布式计算 Hadoop 网络安全
|
3月前
|
存储 分布式计算 Hadoop
|
3月前
|
分布式计算 Hadoop Java