阿里云Redis读写分离典型场景:如何轻松搭建电商秒杀系统

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 本文介绍如何使用阿里云redis搭建一个高性能的电商秒杀系统。

阿里云数据库全新功能Redis读写分离,全维度技术解析 https://yq.aliyun.com/articles/277325

文末有彩蛋,请务必记得看完整哦

背景

秒杀活动是绝大部分电商选择的低价促销,推广品牌的方式。不仅可以给平台带来用户量,还可以提高平台知名度。一个好的秒杀系统,可以提高平台系统的稳定性和公平性,获得更好的用户体验,提升平台的口碑,从而提升秒杀活动的最大价值。
本次主要讨论阿里云云数据库Redis缓存设计高并发的秒杀系统。

秒杀的特征

秒杀活动对稀缺或者特价的商品进行定时,定量售卖,吸引成大量的消费者进行抢购,但又只有少部分消费者可以下单成功。因此,秒杀活动将在较短时间内产生比平时大数十倍,上百倍的页面访问流量和下单请求流量。

秒杀活动可以分为3个阶段:

  • 秒杀前:用户不断刷新商品详情页,页面请求达到瞬时峰值。
  • 秒杀开始:用户点击秒杀按钮,下单请求达到瞬时峰值。
  • 秒杀后:一部分成功下单的用户不断刷新订单或者产生退单操作,大部分用户继续刷新商品详情页等待退单机会。

消费者提交订单,一般做法是利用数据库的行级锁。只有抢到锁的请求可以进行库存查询和下单操作。但是在高并发的情况下,数据库无法承担如此大的请求,往往会使整个服务blocked,在消费者看来就是服务器宕机。

秒杀系统

系统架构图

jingyuan1
秒杀系统的流量虽然很高,但是实际有效流量是十分有限的。利用系统的层次结构,在每个阶段提前校验,拦截无效流量,可以减少大量无效的流量涌入数据库。

利用浏览器缓存和CDN抗压静态页面流量

秒杀前,用户不断刷新商品详情页,造成大量的页面请求。所以,我们需要把秒杀商品详情页与普通的商品详情页分开。对于秒杀商品详情页尽量将能静态化的元素尽量静态化处理,除了秒杀按钮需要服务端进行动态判断,其他的静态数据可以缓存在浏览器和CDN上。这样,秒杀前刷新页面导致的流量进入服务段的流量只有很小的一部分

利用阿里云读写分离Redis缓存拦截流量

CDN是第一级流量拦截,第二级流量拦截我们使用支持读写分离的阿里云Redis。在这一阶段我们主要读取数据,读写分离Redis能支持高大60万以上qps的,完全可以支持需求。

首先通过数据控制模块,提前将秒杀商品的缓存到阿里云读写分离Redis,并设置秒杀开始标记:

"goodsId_count": 100 //总数
"goodsId_start": 0   //开始标记
"goodsId_access": 0  //接受下单数

秒杀开始前,服务集群读取goodsId_Start为0,直接返回未开始。
数据控制模块将goodsId_start改为1,标志秒杀开始。
服务集群缓存开始标记位并开始接受请求,并记录到redis中goodsId_access,商品剩余数量为(goodsId_count - goodsId_access)。
当接受下单数达到goodsId_count后,继续拦截所有请求,商品剩余数量为0
可以看出,最后成功参与下单的请求只有少部分可以被接受。在高并发的情况下,允许稍微多的流量进入。因此可以控制接受下单数的比例。

利用阿里云主从版Redis缓存加速库存扣量

成功参与下单,进入下层服务,开始进行订单信息校验,库存扣量。为了避免直接访问数据库,我们使用阿里云主从版Redis来进行库存扣量,阿里云主从版Redis提供10万级别的QPS。我们使用Redis来优化库存查询,提前拦截秒杀失败的请求,将大大提高系统的整体吞吐量。我们也是通过数据控制模块提前将库存存入Redis:

//我们将每个秒杀商品在redis中用一个hash结构表示

"goodsId" : {
    "Total": 100
    "Booked": 100
}

扣量时,服务器通过请求Redis获取下单资格,我们通过lua脚本实现,由于Redis时单线程模型,lua可以保证多个命令的原子性:

lua脚本:

local n = tonumber(ARGV[1])
if not n  or n == 0 then
    return 0       
end                
local vals = redis.call("HMGET", KEYS[1], "Total", "Booked");
local total = tonumber(vals[1])
local blocked = tonumber(vals[2])
if not total or not blocked then
    return 0       
end                
if blocked + n <= total then
    redis.call("HINCRBY", KEYS[1], "Booked", n)                                   
    return n;   
end                
return 0

先使用SCRIPT LOAD将lua脚本提前缓存在Redis,然后调用EVALSHA调用脚本,比直接调用EVAL节省网络带宽:

redis 127.0.0.1:6379>SCRIPT LOAD "lua code"
"438dd755f3fe0d32771753eb57f075b18fed7716"
    
redis 127.0.0.1:6379>EVAL 438dd755f3fe0d32771753eb57f075b18fed7716 1 goodsId 1

秒杀服务通过判断Redis是否返回抢购个数n,即可知道此次请求是否扣量成功。

使用阿里云主从版Redis实现简单的消息队列异步下单入库

扣量完成后,需要进行订单入库。如果商品数量较少的时候,直接操作数据库即可。如果秒杀的商品是1万,甚至10万级别,那数据库锁冲突将带来很大的性能瓶颈。因此,利用消息队列组件,当秒杀服务将订单信息写入消息队列后,即可认为下单完成,避免直接操作数据库。

消息队列组件依然可以使用Redis实现,在R2中用list数据结构表示:

orderList {
    [0] = {订单内容} 
    [1] = {订单内容}
    [2] = {订单内容}
    ...
}

将订单内容写入Redis:

LPUSH orderList {订单内容}

异步下单模块从Redis中顺序获取订单信息,并将订单写入数据库:

BRPOP orderList 0

我们通过使用Redis作为消息队列,异步处理订单入库,有效的提高了用户的下单完成速度。

数据控制模块,管理秒杀数据同步

最开始,我们利用阿里云读写分离Redis进行流量限制,只让部分流量进入下单。对于下单检验失败和退单等情况,我们需要让更多的流量进来。因此,数据控制模块需要定时将数据库中的数据进行一定的计算,同步到主从版Redis,同时再同步到读写分离的Redis,让更多的流量进来。

使用阿里云Redis的优势

  • 阿里云主从版Redis提供10万的QPS,读写分离版本Redis提供60万QPS最大力度支持秒杀系统的高并发需求。
  • 资深专家团队深度开发维护Redis源码,经千万服务考验,超高稳定性和安全性。
  • 双机热备架构,故障秒级自动迁移,全力保障订单数据。
  • 一键创建,一键扩容,全方位智能监控运维平台。请求量,活跃度一眼就能看清。
  • 专业服务团队,实时监控可用性,7 x 24小时在线咨询。

广告

云数据库Redis版(ApsaraDB for Redis)是一种稳定可靠、性能卓越、可弹性伸缩的数据库服务。基于飞天分布式系统和全SSD盘高性能存储,支持主备版和集群版两套高可用架构。提供了全套的容灾切换、故障迁移、在线扩容、性能优化的数据库解决方案。欢迎各位购买使用:云数据库 Redis 版

这里是彩蛋

感谢各位小伙伴的耐心阅读,现在参加Redis读写分离微博转发活动还有机会获得2017年 FIFA世俱杯门票以及阿里云T恤
点击云栖社区官方微博活动链接:https://weibo.com/1939498534/FydFv4EB1?ref=home&type=comment#_rnd1512444442357 ,12月6日抽取8名幸运用户2017年 FIFA世俱杯门票1张,12月12日抽20名幸运用户赠阿里云T恤1件。

目录
相关文章
|
17天前
|
存储 NoSQL Redis
阿里云高性能数据库Tair(兼容 Redis)收费价格,稳定可靠成本低
阿里云高性能云数据库Tair兼容Redis,提供Redis开源版和Tair企业版,支持多种存储介质与灵活扩展,适用于高并发场景。Tair具备亚毫秒级稳定延迟,保障业务连续性。价格方面,Redis开源版年费从72元起,Tair企业版年费从1224元起,具体费用根据配置不同有所变化。
NoSQL 数据可视化 关系型数据库
37 0
|
4月前
|
机器学习/深度学习 数据采集 人机交互
springboot+redis互联网医院智能导诊系统源码,基于医疗大模型、知识图谱、人机交互方式实现
智能导诊系统基于医疗大模型、知识图谱与人机交互技术,解决患者“知症不知病”“挂错号”等问题。通过多模态交互(语音、文字、图片等)收集病情信息,结合医学知识图谱和深度推理,实现精准的科室推荐和分级诊疗引导。系统支持基于规则模板和数据模型两种开发原理:前者依赖人工设定症状-科室规则,后者通过机器学习或深度学习分析问诊数据。其特点包括快速病情收集、智能病症关联推理、最佳就医推荐、分级导流以及与院内平台联动,提升患者就诊效率和服务体验。技术架构采用 SpringBoot+Redis+MyBatis Plus+MySQL+RocketMQ,确保高效稳定运行。
275 0
|
5月前
|
JSON NoSQL Redis
在Rocky9系统上安装并使用redis-dump和redis-load命令的指南
以上步骤是在Rocky9上使用redis-dump和redis-load命令顺利出行的秘籍。如果在实行的过程中,发现了新的冒险和挑战,那么就像一个勇敢的航海家,本着探索未知的决心,解决问题并前进。
159 14
|
5月前
|
缓存 NoSQL Java
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
109 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
|
7月前
|
存储 NoSQL Redis
投行系统的毫秒级榜单响应:如何用Redis ZSET破解同分排序难题?
通过Redis的ZSET数据结构和更新时间戳,解决投行交易系统实时排行榜中同分跳变的问题。具体方案为:将交易量作为整数部分,更新时间戳作为小数部分,确保同分时按最新更新排序,实现实时、高效、无需应用层干预的排行榜功能。一句话总结:通过Redis ZSET加更新时间戳,解决百万交易排行榜实时显示及同分难题。
|
11月前
|
JavaScript NoSQL Java
CC-ADMIN后台简介一个基于 Spring Boot 2.1.3 、SpringBootMybatis plus、JWT、Shiro、Redis、Vue quasar 的前后端分离的后台管理系统
CC-ADMIN后台简介一个基于 Spring Boot 2.1.3 、SpringBootMybatis plus、JWT、Shiro、Redis、Vue quasar 的前后端分离的后台管理系统
284 0
|
12月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
200 6
|
12月前
|
监控 NoSQL Redis
开发者如何使用阿里云Redis
【10月更文挑战第2天】开发者如何使用阿里云Redis
1632 0
|
17天前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
101 1
Redis专题-实战篇二-商户查询缓存

热门文章

最新文章