【天池直播】图像系列直播第一讲--带你入坑深度学习

简介: 天池医疗AI大赛人气奖冠军团队带你入门深度学习。 同时,图像识别系列第一讲正式开讲!

天池医疗AI大赛以“人工智能辅助医疗决策”为主题,围绕全球第一高发恶性肿瘤——肺癌,以肺部小结节病变的智能识别、诊断为课题,通过胸部CT影像(mhd格式),检测CT影像中的肺部结节区域。

大赛通过探索早期肺癌精确智能诊断的优秀算法,提升早期肺癌检测的准确度,降低临床上常见的假阳性的误诊发生,实现“早发现,早诊断,早治疗”,从而挽救更多患者生命。

本次邀请医疗AI大赛人气奖冠军带来肺部结节智能诊断的比赛分享。

人气冠军奖帖子《天池医疗AI大赛[第一季] 解决方案:适合新人的工程指南》分享链接:点击详情

直播主题:肺部结节智能诊断比赛分享

直播时间:11月30日 20:00

直播链接:点击查看

直播嘉宾:

image

马晖 天池ID : 天雷无妄

2003 毕业于上海交通大学生物医学工程专业,

目前就职于吉祥航空 ,从事战略规划和商业分析等。

对未知领域有好奇 ,对学习解惑有行动力,对实践试错有耐心和毅力。

直播内容:

1. 天池医疗 AI 大赛经验分享

2. 快速入门 Deep Learning 心得和学习路线

有奖互动

一、最佳分享

截止到12月6日18点,在天池技术圈分享你图像相关内容,被直播嘉宾确认为有价值文章作者,即有机会获得《机器学习应用实践》一本!

限量2本。
image

二、嘉宾互动抽奖

互动时间:11月30日直播活动后

互动时长:15-30分钟

互动地址:天池直播间留言区-点击留言

互动规则:

   周四直播后,对于视频中的内容或者大赛有问题的同学可以在互动时间内留言提问 @天雷无妄老师回答

  每逢问题楼层尾数为9,例如9,19,29,39,……即可获得天池定制淘公仔U盘一个!U盘内自带天池历届大赛优胜队伍思路代码,限量30个,先到先得!

image

其他直播推荐

【直播已沉淀】神经网络架构演化以及基于Tflearn实现Cifar10的图像分类

【直播已沉淀】人脸识别技术的发展及应用

【直播已沉淀】BRYAN直播深度学习应用之目标检测

【直播已沉淀】零基础学会大数据算法

相关文章
|
4月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习中的图像风格迁移
【9月更文挑战第26天】本文将探讨如何利用深度学习技术,实现图像风格的转换。我们将从基础的理论出发,然后逐步深入到具体的实现过程,最后通过代码实例来展示这一技术的实际应用。无论你是初学者还是有经验的开发者,都能在这篇文章中找到有价值的信息。让我们一起探索深度学习的奥秘吧!
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
利用深度学习实现图像风格迁移
【8月更文挑战第73天】本文通过深入浅出的方式,介绍了一种使用深度学习技术进行图像风格迁移的方法。我们将探讨如何将一张普通照片转化为具有著名画作风格的艺术作品。文章不仅解释了背后的技术原理,还提供了一个实际的代码示例,帮助读者理解如何实现这一过程。
|
2月前
|
机器学习/深度学习 编解码 算法
什么是超分辨率?浅谈一下基于深度学习的图像超分辨率技术
超分辨率技术旨在提升图像或视频的清晰度,通过增加单位长度内的采样点数量来提高空间分辨率。基于深度学习的方法,如SRCNN、VDSR、SRResNet等,通过卷积神经网络和残差学习等技术,显著提升了图像重建的质量。此外,基于参考图像的超分辨率技术通过利用高分辨率参考图像,进一步提高了重建图像的真实感和细节。
|
2月前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
40 0
|
4月前
|
机器学习/深度学习 并行计算 PyTorch
图像检测【YOLOv5】——深度学习
Anaconda的安装配置:(Anaconda是一个开源的Python发行版本,包括Conda、Python以及很多安装好的工具包,比如:numpy,pandas等,其中conda是一个开源包和环境管理器,可以用于在同一个电脑上安装不同版本的软件包,并且可以在不同环境之间切换,是深度学习的必备平台。) 一.Anaconda安装配置. 1.首先进入官网:https://repo.anaconda.com,选择View All Installers. 2.打开看到的界面是Anaconda的所以安装包版本,Anaconda3就代表是Python3版本,后面跟的是发行日期,我选择了最近的2022
82 28
|
3月前
|
机器学习/深度学习 数据挖掘 数据处理
深度学习之卫星图像中的环境监测
基于深度学习的卫星图像环境监测是指通过使用深度学习模型处理和分析来自卫星的遥感数据,以实现对地球环境的自动化监测和分析。这项技术极大提升了环境监测的效率、精度和规模,应用于气候变化研究、生态保护、自然灾害监测、城市扩张评估等多个领域。
175 0
|
4月前
|
机器学习/深度学习 算法 搜索推荐
利用深度学习实现图像风格迁移
【9月更文挑战第21天】本文将介绍一种使用深度学习技术,特别是卷积神经网络(CNN)和生成对抗网络(GAN)来实现图像风格迁移的方法。我们将探索如何将这些技术应用于艺术创作,以及它们如何影响现代视觉艺术的发展。
|
4月前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习之文本引导的图像编辑
基于深度学习的文本引导的图像编辑(Text-Guided Image Editing)是一种通过自然语言文本指令对图像进行编辑或修改的技术。
78 8
|
4月前
|
机器学习/深度学习 自然语言处理 并行计算
深度学习之图像描述生成
基于深度学习的图像描述生成(Image Captioning)是一种将计算机视觉与自然语言处理结合的任务,其目标是通过自动生成自然语言来描述输入的图像。该技术能够理解图像中的视觉内容,并生成相应的文本描述,广泛应用于视觉问答、辅助盲人、自动视频字幕生成等领域。
218 7
|
3月前
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)