HDOJ1021题 Fibonacci Again 应用求模公式

简介: Problem Description There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2).

Problem Description
There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2).

Input
Input consists of a sequence of lines, each containing an integer n. (n < 1,000,000).

Output
Print the word “yes” if 3 divide evenly into F(n).

Print the word “no” if not.

Sample Input
0
1
2
3
4
5

Sample Output
no
no
yes
no
no
no

应用求模公式
(1) (a + b) % p = (a % p + b % p) % p
(2) (a - b) % p = (a % p - b % p) % p
(3) (a * b) % p = (a % p * b % p) % p
(4) a ^ b % p = ((a % p)^b) % p
如果不用的话会溢出。
代码:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
using namespace std;

int main()
{
    int a[1000001],i,j,s;
    a[0]=7;a[1]=11;
    for(i=2;i<1000001;i++)
    {
        a[i]=(a[i-1]%3+a[i-2]%3)%3;//只写最后那个%3也可以
    }
    while(~scanf("%d",&s))
    {
        if(a[s]%3==0)
            printf("yes\n");
        else
            printf("no\n");
    }
    return 0;
}
目录
相关文章
HDOJ1021题 Fibonacci Again 应用求模公式
HDOJ1021题 Fibonacci Again 应用求模公式
146 0
Fibonacci数列的多种求法
Fibonacci数列的多种求法
93 0
|
C++
C++ 超大整数相加、相乘的精确求解,以及10000的阶乘
C++ 超大整数相加、相乘的精确求解,以及10000的阶乘
142 0
求斐波那契数列的特征方程和通项公式
求斐波那契数列的特征方程和通项公式
464 0
求斐波那契数列的特征方程和通项公式
【欧拉计划第 2 题】 偶数斐波那契数 Even Fibonacci numbers
【欧拉计划第 2 题】 偶数斐波那契数 Even Fibonacci numbers
175 0
【欧拉计划第 2 题】 偶数斐波那契数 Even Fibonacci numbers
大整数相乘(分治)
参考了(感谢):http://blog.csdn.net/jeffleo/article/details/53446095 继续变换:XY=AC2^n+[(A-B)(D-C)+AC+BD]2^n/2+BD 把原来的A...
876 0
|
7月前
1685. 有序数组中差绝对值之和
1685. 有序数组中差绝对值之和
|
算法
【学会动态规划】乘积为正数的最长子数组长度(21)
【学会动态规划】乘积为正数的最长子数组长度(21)
76 0

热门文章

最新文章