Implement a function to check if a tree is balanced For the purposes of this question, a balanced tree is defined to be a tree such that no two leaf nodes differ in distance from the root by more than one
答案是两次遍历分别求出最大深度与最小深度,我试着一次遍历求出最大和最小深度
#include <iostream>
using namespace std;
typedef int Data;
struct TreeNode
{
TreeNode(Data d):data(d){left = right = NULL;};
Data data;
TreeNode* left;
TreeNode* right;
};
class Tree
{
public:
Tree():root(NULL){};
TreeNode* root;
void insert(Data data, TreeNode* node = NULL)
{
if(root == NULL)
{
root = new TreeNode(data);
return;
}
if(node == NULL) node = root;
if(data == node->data)
{
return;
} else if(data < node->data) {
if(node->left == NULL)
node->left = new TreeNode(data);
else
insert(data, node->left);
} else {
if(node->right == NULL)
node->right = new TreeNode(data);
else
insert(data, node->right);
}
};
void inorderPrint(TreeNode* TreeNode)
{
if(TreeNode == root)
cout<<"Print:"<<endl;
if(TreeNode != NULL)
{
inorderPrint(TreeNode->left);
cout<<TreeNode->data<<" ";
inorderPrint(TreeNode->right);
}
if(TreeNode == root)
cout<<endl<<"End"<<endl;
};
void preorderPrint(TreeNode* TreeNode)
{
if(TreeNode == root)
cout<<"Print:"<<endl;
if(TreeNode != NULL)
{
cout<<TreeNode->data<<" ";
preorderPrint(TreeNode->left);
preorderPrint(TreeNode->right);
}
if(TreeNode == root)
cout<<endl<<"End"<<endl;
};
void postorderPrint(TreeNode* node)
{
if(node == root)
cout<<"Print:"<<endl;
if(node != NULL)
{
postorderPrint(node->left);
postorderPrint(node->right);
cout<<node->data<<" ";
}
if(node == root)
cout<<endl<<"End"<<endl;
};
bool isBalanced()
{
int min=0 ,max=0;
calDepth(root, 0, &min, &max);
cout<<"Min: "<<min<<endl<<"Max: "<<max<<endl;
if(max - min < 2)
return true;
else
return false;
};
void calDepth(TreeNode* node, int depth, int* min, int* max)
{
if(node == NULL) return;
depth++;
if(node->left == NULL && node->right == NULL)
{
if(depth < *min || *min <= 0)
*min = depth;
if(depth > *max || *max <= 0)
*max = depth;
}
calDepth(node->left, depth, min, max);
calDepth(node->right, depth, min, max);
};
};
int main()
{
Tree tree;
tree.insert(5);
tree.insert(1);
tree.insert(7);
tree.insert(4);
tree.insert(3);
cout<<boolalpha<<tree.isBalanced();
system("pause");
};