Java多线程之Lock的使用(转)

简介: package thread.lock; import java.util.concurrent.ExecutorService; import java.util.concurrent.

 

package thread.lock;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * Lockers 在多线程编程里面一个重要的概念是锁定,如果一个资源是多个线程共享的,为了保证数据的完整性,
 * 在进行事务性操作时需要将共享资源锁定,这样可以保证在做事务性操作时只有一个线程能对资源进行操作,
 * 从而保证数据的完整性。在5.0以前,锁定的功能是由Synchronized关键字来实现的。
 */
public class Lockers {
    /**
     * 测试Lock的使用。在方法中使用Lock,可以避免使用Synchronized关键字。
     */
    public static class LockTest {

        Lock lock = new ReentrantLock();//
        double value = 0d; //
        int addtimes = 0;

        /**
         * 增加value的值,该方法的操作分为2步,而且相互依赖,必须实现在一个事务中
         * 所以该方法必须同步,以前的做法是在方法声明中使用Synchronized关键字。
         */
        public void addValue(double v) {
            lock.lock();// 取得锁
            System.out.println("LockTest to addValue: " + v + "   " + System.currentTimeMillis());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            this.value += v;
            this.addtimes++;
            lock.unlock();// 释放锁
        }

        public double getValue() {
            return this.value;
        }
    }

    public static void testLockTest() throws Exception {
        final LockTest lockTest = new LockTest();
        // 新建任务1,调用lockTest的addValue方法
        Runnable task1 = new Runnable() {
            public void run() {
                lockTest.addValue(55.55);
            }
        };
        // 新建任务2,调用lockTest的getValue方法
        Runnable task2 = new Runnable() {
            public void run() {
                System.out.println("value: " + lockTest.getValue());
            }
        };
        // 新建任务执行服务
        ExecutorService cachedService = Executors.newCachedThreadPool();
        Future future = null;
        // 同时执行任务1三次,由于addValue方法使用了锁机制,所以,实质上会顺序执行
        for (int i = 0; i < 3; i++) {
            future = cachedService.submit(task1);
        }
        // 等待最后一个任务1被执行完
        future.get();
        // 再执行任务2,输出结果
        future = cachedService.submit(task2);
        // 等待任务2执行完后,关闭任务执行服务
        future.get();
        cachedService.shutdownNow();
    }

    /**
     * ReadWriteLock内置两个Lock,一个是读的Lock,一个是写的Lock。
     * 多个线程可同时得到读的Lock,但只有一个线程能得到写的Lock,
     * 而且写的Lock被锁定后,任何线程都不能得到Lock。ReadWriteLock提供的方法有: readLock(): 返回一个读的lock
     * writeLock(): 返回一个写的lock, 此lock是排他的。 ReadWriteLockTest很适合处理类似文件的读写操作。
     * 读的时候可以同时读,但不能写;写的时候既不能同时写也不能读。
     */
    public static class ReadWriteLockTest {
        //
        ReadWriteLock lock = new ReentrantReadWriteLock();
        //
        double value = 0d;
        int addtimes = 0;

        /**
         * 增加value的值,不允许多个线程同时进入该方法
         */
        public void addValue(double v) {
            // 得到writeLock并锁定
            Lock writeLock = lock.writeLock();
            writeLock.lock();
            System.out.println("ReadWriteLockTest to addValue: " + v + "   "
                    + System.currentTimeMillis());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
            }
            try {
                // 做写的工作
                this.value += v;
                this.addtimes++;
            } finally {
                // 释放writeLock锁
                writeLock.unlock();
            }
        }

        /**
         * 获得信息。当有线程在调用addValue方法时,getInfo得到的信息可能是不正确的。
         * 所以,也必须保证该方法在被调用时,没有方法在调用addValue方法。
         */
        public String getInfo() {
            // 得到readLock并锁定
            Lock readLock = lock.readLock();
            readLock.lock();
            System.out.println("ReadWriteLockTest to getInfo   "
                    + System.currentTimeMillis());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
            }
            try {
                // 做读的工作
                return this.value + " : " + this.addtimes;
            } finally {
                // 释放readLock
                readLock.unlock();
            }
        }
    }

    public static void testReadWriteLockTest() throws Exception {
        final ReadWriteLockTest readWriteLockTest = new ReadWriteLockTest();
        // 新建任务1,调用lockTest的addValue方法
        Runnable task_1 = new Runnable() {
            public void run() {
                readWriteLockTest.addValue(55.55);
            }
        };
        // 新建任务2,调用lockTest的getValue方法
        Runnable task_2 = new Runnable() {
            public void run() {
                System.out.println("info: " + readWriteLockTest.getInfo());
            }
        };
        // 新建任务执行服务
        ExecutorService cachedService_1 = Executors.newCachedThreadPool();
        Future future_1 = null;
        // 同时执行5个任务,其中前2个任务是task_1,后两个任务是task_2
        for (int i = 0; i < 2; i++) {
            future_1 = cachedService_1.submit(task_1);
        }
        for (int i = 0; i < 2; i++) {
            future_1 = cachedService_1.submit(task_2);
        }
        // 最后一个任务是task_1
        future_1 = cachedService_1.submit(task_1);
        // 这5个任务的执行顺序应该是:
        // 第一个task_1先执行,第二个task_1再执行;这是因为不能同时写,所以必须等。
        // 然后2个task_2同时执行;这是因为在写的时候,就不能读,所以都等待写结束,
        // 又因为可以同时读,所以它们同时执行
        // 最后一个task_1再执行。这是因为在读的时候,也不能写,所以必须等待读结束后,才能写。

        // 等待最后一个task_2被执行完
        future_1.get();
        cachedService_1.shutdownNow();
    }

    public static void main(String[] args) throws Exception {
        Lockers.testLockTest();
        System.out.println("---------------------");
        Lockers.testReadWriteLockTest();
    }
}

 

相关文章
|
3天前
|
存储 缓存 Java
java线程内存模型底层实现原理
java线程内存模型底层实现原理
java线程内存模型底层实现原理
|
5天前
|
Java 开发者
Java中的多线程基础与应用
【9月更文挑战第22天】在Java的世界中,多线程是一块基石,它支撑着现代并发编程的大厦。本文将深入浅出地介绍Java中多线程的基本概念、创建方法以及常见的应用场景,帮助读者理解并掌握这一核心技术。
|
7天前
|
Java
领略Lock接口的风采,通过实战演练,让你迅速掌握这门高深武艺,成为Java多线程领域的武林盟主
领略Lock接口的风采,通过实战演练,让你迅速掌握这门高深武艺,成为Java多线程领域的武林盟主
21 7
|
6天前
|
Java 程序员
Java中的多线程基础与实践
【9月更文挑战第21天】本文旨在引导读者深入理解Java多线程的核心概念,通过生动的比喻和实例,揭示线程创建、同步机制以及常见并发工具类的使用。文章将带领读者从理论到实践,逐步掌握如何在Java中高效地运用多线程技术。
|
4天前
|
Java 调度 开发者
Java中的多线程编程:从基础到实践
本文旨在深入探讨Java多线程编程的核心概念和实际应用,通过浅显易懂的语言解释多线程的基本原理,并结合实例展示如何在Java中创建、控制和管理线程。我们将从简单的线程创建开始,逐步深入到线程同步、通信以及死锁问题的解决方案,最终通过具体的代码示例来加深理解。无论您是Java初学者还是希望提升多线程编程技能的开发者,本文都将为您提供有价值的见解和实用的技巧。
13 2
|
5天前
|
Java 数据处理
Java中的多线程编程:从基础到实践
本文旨在深入探讨Java中的多线程编程,涵盖其基本概念、创建方法、同步机制及实际应用。通过对多线程基础知识的介绍和具体示例的演示,希望帮助读者更好地理解和应用Java多线程编程,提高程序的效率和性能。
18 1
|
1天前
|
安全 算法 Java
Java中的多线程编程:从基础到高级应用
本文深入探讨了Java中的多线程编程,从最基础的概念入手,逐步引导读者了解并掌握多线程开发的核心技术。无论是初学者还是有一定经验的开发者,都能从中获益。通过实例和代码示例,本文详细讲解了线程的创建与管理、同步与锁机制、线程间通信以及高级并发工具等主题。此外,还讨论了多线程编程中常见的问题及其解决方案,帮助读者编写出高效、安全的多线程应用程序。
|
3天前
|
存储 缓存 Java
JAVA并发编程系列(11)线程池底层原理架构剖析
本文详细解析了Java线程池的核心参数及其意义,包括核心线程数量(corePoolSize)、最大线程数量(maximumPoolSize)、线程空闲时间(keepAliveTime)、任务存储队列(workQueue)、线程工厂(threadFactory)及拒绝策略(handler)。此外,还介绍了四种常见的线程池:可缓存线程池(newCachedThreadPool)、定时调度线程池(newScheduledThreadPool)、单线程池(newSingleThreadExecutor)及固定长度线程池(newFixedThreadPool)。
|
1月前
|
存储 监控 Java
Java多线程优化:提高线程池性能的技巧与实践
Java多线程优化:提高线程池性能的技巧与实践
57 1
|
4月前
|
设计模式 监控 Java
Java多线程基础-11:工厂模式及代码案例之线程池(一)
本文介绍了Java并发框架中的线程池工具,特别是`java.util.concurrent`包中的`Executors`和`ThreadPoolExecutor`类。线程池通过预先创建并管理一组线程,可以提高多线程任务的效率和响应速度,减少线程创建和销毁的开销。
116 2