Elasticsearch: 权威指南 » 深入搜索 » 多字段搜索 » 多数字段 good

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 跨字段实体搜索  » 多数字段编辑 全文搜索被称作是 召回率(Recall) 与 精确率(Precision) 的战场: 召回率 ——返回所有的相关文档;精确率 ——不返回无关文档。

多数字段编辑

全文搜索被称作是 召回率(Recall) 与 精确率(Precision) 的战场: 召回率 ——返回所有的相关文档;精确率 ——不返回无关文档。目的是在结果的第一页中为用户呈现最为相关的文档。

为了提高召回率的效果,我们扩大搜索范围 ——不仅返回与用户搜索词精确匹配的文档,还会返回我们认为与查询相关的所有文档。如果一个用户搜索 “quick brown box” ,一个包含词语 fast foxes 的文档被认为是非常合理的返回结果。

如果包含词语 fast foxes 的文档是能找到的唯一相关文档,那么它会出现在结果列表的最上面,但是,如果有 100 个文档都出现了词语 quick brown fox ,那么这个包含词语 fast foxes 的文档当然会被认为是次相关的,它可能处于返回结果列表更下面的某个地方。当包含了很多潜在匹配之后,我们需要将最匹配的几个置于结果列表的顶部。

提高全文相关性精度的常用方式是为同一文本建立多种方式的索引, 每种方式都提供了一个不同的相关度信号 signal 。主字段会以尽可能多的形式的去匹配尽可能多的文档。举个例子,我们可以进行以下操作:

  • 使用词干提取来索引 jumps 、 jumping 和 jumped 样的词,将 jump 作为它们的词根形式。这样即使用户搜索 jumped ,也还是能找到包含 jumping 的匹配的文档。
  • 将同义词包括其中,如 jump 、 leap 和 hop 。
  • 移除变音或口音词:如 ésta 、 está 和 esta 都会以无变音形式 esta 来索引。

尽管如此,如果我们有两个文档,其中一个包含词 jumped ,另一个包含词 jumping ,用户很可能期望前者能排的更高,因为它正好与输入的搜索条件一致。

为了达到目的,我们可以将相同的文本索引到其他字段从而提供更为精确的匹配。一个字段可能是为词干未提取过的版本,另一个字段可能是变音过的原始词,第三个可能使用 shingles 提供 词语相似性 信息。这些附加的字段可以看成提高每个文档的相关度评分的信号 signals ,能匹配字段的越多越好。

一个文档如果与广度匹配的主字段相匹配,那么它会出现在结果列表中。如果文档同时又与 signal 信号字段匹配,那么它会获得额外加分,系统会提升它在结果列表中的位置。

我们会在本书稍后对同义词、词相似性、部分匹配以及其他潜在的信号进行讨论,但这里只使用词干已提取(stemmed)和未提取(unstemmed)的字段作为简单例子来说明这种技术。

多字段映射编辑

首先要做的事情就是对我们的字段索引两次: 一次使用词干模式以及一次非词干模式。为了做到这点,采用 multifields 来实现,已经在 multifields 有所介绍:

DELETE /my_index

PUT /my_index
{
    "settings": { "number_of_shards": 1 }, 
    "mappings": {
        "my_type": {
            "properties": {
                "title": { 
                    "type":     "string",
                    "analyzer": "english",
                    "fields": {
                        "std":   { 
                            "type":     "string",
                            "analyzer": "standard"
                        }
                    }
                }
            }
        }
    }
}

参考 被破坏的相关度.

title 字段使用 english 英语分析器来提取词干。

title.std 字段使用 standard 标准分析器,所以没有词干提取。

接着索引一些文档:

PUT /my_index/my_type/1
{ "title": "My rabbit jumps" }

PUT /my_index/my_type/2
{ "title": "Jumping jack rabbits" }

这里用一个简单 match 查询 title 标题字段是否包含 jumping rabbits (跳跃的兔子):

GET /my_index/_search
{
   "query": {
        "match": {
            "title": "jumping rabbits"
        }
    }
}

因为有了 english 分析器,这个查询是在查找以 jump 和 rabbit 这两个被提取词的文档。两个文档的 title 字段都同时包括这两个词,所以两个文档得到的评分也相同:

{
  "hits": [
     {
        "_id": "1",
        "_score": 0.42039964,
        "_source": {
           "title": "My rabbit jumps"
        }
     },
     {
        "_id": "2",
        "_score": 0.42039964,
        "_source": {
           "title": "Jumping jack rabbits"
        }
     }
  ]
}

如果只是查询 title.std 字段,那么只有文档 2 是匹配的。尽管如此,如果同时查询两个字段,然后使用 bool 查询将评分结果 合并 ,那么两个文档都是匹配的( title 字段的作用),而且文档 2 的相关度评分更高( title.std 字段的作用):

GET /my_index/_search
{
   "query": {
        "multi_match": {
            "query":  "jumping rabbits",
            "type":   "most_fields", 
            "fields": [ "title", "title.std" ]
        }
    }
}

我们希望将所有匹配字段的评分合并起来,所以使用 most_fields 类型。这让 multi_match 查询用 bool 查询将两个字段语句包在里面,而不是使用 dis_max 查询。

{
  "hits": [
     {
        "_id": "2",
        "_score": 0.8226396, 
        "_source": {
           "title": "Jumping jack rabbits"
        }
     },
     {
        "_id": "1",
        "_score": 0.10741998, 
        "_source": {
           "title": "My rabbit jumps"
        }
     }
  ]
}

 

文档 2 现在的评分要比文档 1 高。

用广度匹配字段 title 包括尽可能多的文档——以提升召回率——同时又使用字段 title.std 作为 信号 将相关度更高的文档置于结果顶部。

每个字段对于最终评分的贡献可以通过自定义值 boost 来控制。比如,使 title 字段更为重要,这样同时也降低了其他信号字段的作用:

GET /my_index/_search
{
   "query": {
        "multi_match": {
            "query":       "jumping rabbits",
            "type":        "most_fields",
            "fields":      [ "title^10", "title.std" ] 
        }
    }
}

title 字段的 boost 的值为 10 使它比 title.std 更重要。

 

https://www.elastic.co/guide/cn/elasticsearch/guide/current/most-fields.html

 

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
11月前
|
存储 自然语言处理 BI
从 Elasticsearch 到 Apache Doris 腾讯音乐内容库升级,统一搜索分析引擎,成本直降 80%
实现写入性能提升 4 倍、使用成本节省达 80% 的显著成效
345 1
从 Elasticsearch 到 Apache Doris 腾讯音乐内容库升级,统一搜索分析引擎,成本直降 80%
|
4月前
|
存储 安全 Linux
Elasticsearch Enterprise 9.0 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.0 (macOS, Linux, Windows) - 分布式搜索和分析引擎
190 0
|
4月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 8.18 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 8.18 (macOS, Linux, Windows) - 分布式搜索和分析引擎
111 0
|
SQL JSON 大数据
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
这篇文章是Elasticsearch的进阶使用指南,涵盖了Search API的两种检索方式、Query DSL的基本语法和多种查询示例,包括全文检索、短语匹配、多字段匹配、复合查询、结果过滤、聚合操作以及Mapping的概念和操作,还讨论了Elasticsearch 7.x和8.x版本中type概念的变更和数据迁移的方法。
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
|
9月前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
490 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
9月前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
474 2
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
8月前
|
人工智能 自然语言处理 搜索推荐
云端问道12期实操教学-构建基于Elasticsearch的企业级AI搜索应用
本文介绍了构建基于Elasticsearch的企业级AI搜索应用,涵盖了从传统关键词匹配到对话式问答的搜索形态演变。阿里云的AI搜索产品依托自研和开源(如Elasticsearch)引擎,提供高性能检索服务,支持千亿级数据毫秒响应。文章重点描述了AI搜索的三个核心关键点:精准结果、语义理解、高性能引擎,并展示了架构升级和典型应用场景,包括智能问答、电商导购、多模态图书及商品搜索等。通过实验部分,详细演示了如何使用阿里云ES搭建AI语义搜索Demo,涵盖模型创建、Pipeline配置、数据写入与检索测试等步骤,同时介绍了相关的计费模式。
204 3
|
8月前
|
人工智能 算法 API
构建基于 Elasticsearch 的企业级 AI 搜索应用
本文介绍了基于Elasticsearch构建企业级AI搜索应用的方案,重点讲解了RAG(检索增强生成)架构的实现。通过阿里云上的Elasticsearch AI搜索平台,简化了知识库文档抽取、文本切片等复杂流程,并结合稠密和稀疏向量的混合搜索技术,提升了召回和排序的准确性。此外,还探讨了Elastic的向量数据库优化措施及推理API的应用,展示了如何在云端高效实现精准的搜索与推理服务。未来将拓展至多模态数据和知识图谱,进一步提升RAG效果。
290 1
|
8月前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
695 5
|
9月前
|
存储 人工智能 API
(Elasticsearch)使用阿里云 infererence API 及 semantic text 进行向量搜索
本文展示了如何使用阿里云 infererence API 及 semantic text 进行向量搜索。
361 8