本文转载自http://shift-alt-ctrl.iteye.com/blog/1888827
一.冒泡排序
特点:实现简单,无额外空间消耗,速度较慢,适合数据较少的场景,复杂度为O(N^2)
思路:每一轮比较都从头开始,然后两两比较,如果左值比右值大,则交换位置,每一轮结束后,当前轮"最后一个元素"必将是最大的.
场景:算法稳定,数据量较小的场景。时间复杂度O(n^2)
- 原始数组:[4,3,10,6,2]
- 过程:每一次遍历,都会将“无序区”中最大的元素交换到数组的末尾
- ------------>
- -->3,4,10,6,2
- -->3,4,10,6,2
- -->3,4,6,10,2
- -->3,4,6,2,[10]
- ------------>
- -->3,4,6,2,[10]
- -->3,4,6,2,[10]
- -->3,4,2,[6,10]
- ------------>
- -->3,4,2,[6,10]
- -->3,2,[4,6,10]
- ------------>
- -->2,[3,4,6,10]
- ---->
- 结束:[2,3,4,6,10]
- public class BubbleSort {
- static void sort(int[] sources){
- int tmp;
- int size = sources.length;
- for(int i =0; i < size - 1; i++){
- //精髓:每次遍历,都将"最大"元素顶到最后
- //0, 1,8,13,3,4,7,||20
- //0, 1,8,3,4,7,|| 13,20
- //0, 1,3,4,7,||8,13,20
- //0 ,1,3,4|| 7,8,13,20
- for(int j=0; j< size -i -1;j++){
- if(sources[j] > sources[j+1]){
- tmp = sources[j];
- sources[j] = sources[j+1];
- sources[j+1] = tmp;
- }
- }
- }
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- int[] sources = {1,0,20,8,13,3,4,7};
- sort(sources);
- System.out.println(Arrays.toString(sources));
- }
- }
二.快速排序
特点:速度快,无额外空间开支,不过算法本身基于递归,可能对内存有额外的消耗.不适合数据集合较大的场景.
思路:就像对班级中的同学根据身高分组一样,首先找个学生做"标杆",比他高的站后面,比他矮的站前面;然后从此"标杆"之前/之后的队列中,分别再在找一个"标杆",并按照相同的规则排队,直到结束!!"标杆"的选取,可以是随机的.下面的例子中,将指定数组"区间"(low~high)的一个元素(即low)作为"标杆".
场景:算法不稳定,时间复杂度O(n*logn),空间复杂度O(n*logn)
- 原始数组:[4,3,10,6,2]
- 过程:每次递归内的排序,总是先选择“标杆”,我们取递归区间的第一个元素为标杆
- ------------>
- --->标杆为4,右边开始交换,将比4小的交换
- --->2,3,10,6,[4]
- --->标杆为4,左边开始交换,将比4大的交换
- --->2,3,[4],6,10
- ------------>
- ---->[4]的左右两边分别递归,分成2部分
- (递归1),标杆为2
- ---->2,[3]
- (递归2),标杆为6
- ---->[6],10
- ....
- 结束:[2,3,4,6,10]
- public class QuickSort {
- public static void sort(int[] sources,int low,int high){
- if(low < high){
- int key = sources[low];//此轮比较的key,左边比key大,右边比key小.
- int l = low;
- int h = high;
- int tmp;
- while(l < h){
- //因为我们不能创建额外的数组,所以才取了"交换"数据的方式.
- //从右边开始,将比key大的交换到过来.
- while(l < h && sources[h] >= key){
- h--;
- }
- //右边找到了比key大的.
- if(l < h){
- //交换顺序
- tmp = sources[l];
- sources[l] = sources[h];
- sources[h] = tmp;
- }
- //从左边开始,将比key小的交换过来
- while(l < h && sources[l] <= key){
- l++;
- }
- if(l < h){
- tmp = sources[l];
- sources[l] = sources[h];
- sources[h] = tmp;
- }
- }
- sort(sources, low, l-1);
- sort(sources, l+1, high);
- }
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- int[] sources = {2,15,3,100,87,-1,34,25,77,80,62,11,7,2,55,22};
- sort(sources, 0, sources.length -1);
- System.out.println(Arrays.toString(sources));
- }
- }
三.归并排序
特点: 速度快,不过需要额外的一些存储空间(存储当前递归中有序区),内部基于递归,不适合数据量较大的场景.
思路:分治法,将数组逐步拆分为"组",直到最小的"组",然后每个组内排序,然后依次和相邻的组"排序合并",其中"排序".其内部排序非常简单.直接比较.
场景:算法稳定,适合元素个数较多时,时间复杂度O(n*logn),空间复杂度O(1)
- 原始数组:[4,3,10,6,2]
- 过程:首先将原始数组拆分为更小的组,然后一次对“组”进行排序
- ------------>
- --->拆分
- [4,3,10,6,2]
- |
- [4,3] [10,6,2]
- | |
- [4],[3] [10,6],[2]
- | |
- [4],[3] [10],[6],[2]
- --->合并与排序,从底部开始(递归中)
- [4],[3] [10],[6],[2]
- | |
- [3,4] [6,10],[2]
- | |
- [3,4] [2,6,10]
- |
- [2,3,4,6,10]
- ....
- 结束:[2,3,4,6,10]
- public class MergeSort {
- /**
- * 对指定区间的数据进行排序,将begin~end之间的数据分成两部分
- * @param sources
- * @param begin
- * @param end
- */
- public static void sort(int[] sources,int begin,int end){
- if(begin < end){
- int range = end - begin;
- int mid = begin + range/2;
- sort(sources,begin,mid);//左段
- sort(sources,mid + 1,end);//右端
- merge(sources, begin, mid, end);
- }
- }
- /**
- * 对begin~mid,mid+1 ~end两段区间中的数据进行排序并合并
- * @param sources
- * @param begin
- * @param mid
- * @param end
- */
- private static void merge(int[] sources,int begin,int mid,int end){
- int[] tmp = new int[end - begin + 1];
- int b1 = begin;
- int e1 = mid;
- int b2 = mid+1;
- int e2 = end;
- int i=0;
- for(;b1 <= e1 && b2 <= e2 ; i++){
- //填充tmp数组,并依此在两段数据区域中找到最小的
- if(sources[b1] <= sources[b2]){
- tmp[i] = sources[b1];
- b1++;
- }else{
- tmp[i] = sources[b2];
- b2++;
- }
- }
- //到此为止,两段数据区域,已经至少一个被扫描完毕
- if(b1 > e1){
- //如果b1~e1扫描完毕,那么可能b2~e2还有剩余
- for(int t = b2;t < e2 + 1; t++){
- tmp[i] = sources[t];
- i++;
- }
- }
- if(b2 > e2){
- //如果b2~e2扫描完毕,那么可能b1~e1还有剩余
- for(int t = b1;t < e1 + 1; t++){
- tmp[i] = sources[t];
- i++;
- }
- }
- //replace and fill:将tmp数组的数据,替换到source中,begin~end
- //因为此时tmp中的数据是排序好的
- i=0;
- for(int t= begin;t <= end; t++){
- sources[t] = tmp[i];
- i++;
- }
- tmp = null;//
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- int[] sources = {1,0,20,8,13,3,4,7,-1};
- sort(sources,0,sources.length -1 );
- System.out.println(Arrays.toString(sources));
- }
- }
四.堆排序
特点:速度快,适合大数据量排序,无额外空间消耗,
思路: 将原始数据看做一个"二叉树",首先构建一个"大顶堆":从最后一个(层)非叶子节点开始倒序遍历整个树,依次比较当前节点和它的左右子节点的大小,将较大的值和当前节点交换,树遍历结束后,那么树的根(堆顶)肯定是数组中最大的元素.这个过程称为"构建初始堆".
当"初始堆"构建完毕,最大的元素放在了"堆顶",将"堆顶"的元素和数组的最后一个元素交换,由此可见,数组的最后元素在此后的排序中,已经不需要参与了.那么剩余的元素集合,就是"无序区域".
接下来,对"无序区域"的排序方式和构建"初始堆"过程一样.直到整个"树"被遍历结束.
场景:算法不稳定,适合元素个数较多时,时间复杂度O(n*logn),空间复杂度O(1)
- 原始数组:[4,3,10,6,2,1]
- 过程:首先构建一次“初始堆”,然后基于“初始堆”进行“交换”
- ------------->按照元素顺序,构建成树
- [4]
- | |
- [3] [10]
- | |
- [6] [2] [1]
- -------------->初始堆,从树的叶子节点开始向上进行,最终需要将最大的元素,交换到“顶”部
- -------------->每个节点都和其左右子节点进行比较,将最大的元素,和当前节点交换,如果交换过程中,有打破"大顶堆"原则,将递归.
- ++++++++++++++
- [4]
- | |
- [6] [10]
- | |
- [3] [2] [1]
- 因为[6],[3],[2]中,6最大,因此6需要和3交换位置。至此,[3],[10]两个节点已经肃清
- ++++++++++++++
- [10]
- | |
- [6] [4]
- | |
- [3] [2] [1]
- 因为在[4],[6],[10]中,10最大,因此4需要和10交换位置;此过程依次进行,直到根节点。
- 到此为止数组为[10,6,4,3,2,1],全部为“无序区”
- ---------------->交换与排序
- 将堆顶的元素与“无序区”中最后一个元素交换,“1,6,4,3,2,[10]”,其中[10]为有序区,[10]之前的为“无序区”
- 此后,有序区,将不再参与“堆顶”元素的交换,为了便于理解,在下图中,我们暂且将“有序区”中的元素移除树
- ++++++++++++++
- [1]
- | |
- [6] [4]
- |
- [3] [2]
- 接下来,和“初始堆”的过程一样:从树的底部往上,比较节点,最大元素放在“顶部”,并将其交换到“有序区”
- ++++++++++++++
- [6]
- | |
- [1] [4]
- |
- [3] [2]
- ++++++++++++++因为1调换位置后,[1][3][2]不满足大顶堆,递归
- [6]
- | |
- [3] [4]
- |
- [1] [2]
- ++++++++++++++(6交换到有序区,即[6]和最底层叶子节点[2]交换)
- [2]
- | |
- [1] [4]
- |
- [3]
- ++++++++++++++(继续调整堆顶,基于交换原则,[2]和[4]交换)
- [4]
- | |
- [3] [2]
- |
- [1]
- ++++++++++++++(4交换到有序区,即[4]与最底层叶子节点[1]交换)
- [1]
- |
- [3] [2]
- .....
- 最终数组为:[1,2,3,4,6,10]
- public class MaxHeapSort {
- public static void sort(int[] sources,int length){
- //堆将会以"二叉树"的方式构建,在逻辑上,需要确保"左右"两边树高一致.
- int i = length/2;
- //首先构建一次"初始堆",从树的叶子节点"倒序"遍历所有的节点
- //此次的目的,就是将整棵树中,值最大的节点,交换到树的根部.
- int max = length - 1;//最大索引
- for(; i>=0; i--){
- heap(sources,i,max);
- }
- //"交换"位置,每循环一次,都会把当前树的"根"(也是最大值)和"当前无序区域"的最后一个位置交换
- //交换之后,最后一个位置是最大值,此位置之前的节点,为"无序区域".
- //每执行一次heap方法,都会将当前"无序区域"的最大值放在"根"部.
- //每交换一次,"无序区域"的长度-1(因为最大值已经产生,并交换到了当前"区域"的尾部,下一次heap,就不需要参与)
- for(i = max; i>= 1;i--){
- int tmp = sources[0];
- sources[0] = sources[i];
- sources[i] = tmp;
- max--;//将source[max]"移动"到有序区,将不再参与此后的heap过程
- heap(sources, 0, max);//从"堆顶"调整,每次只需比较最上层2个节点
- }
- }
- /**
- *
- * @param sources 原始数组
- * @param i 当前节点位置
- * @param max (需要比较的范围,即剩余的无序数组的最大索引)
- */
- private static void heap(int[] sources,int i,int max){
- //计算出当前"节点i"的左右子节点的位置(在数组中的位置)
- int l = 2 * i + 1;//左
- int r = 2 * i + 2;//右
- int c = i;//当前索引
- //找出"当前节点""左右子节点"三个节点中,最大的值,以构建"大顶堆"
- if(l <= max && sources[l] > sources[c]){
- c = l;
- }
- if(r <= max && sources[r] > sources[c]){
- c = r;
- }
- if(c != i){
- //交换数据
- int tmp = sources[i];
- sources[i] = sources[c];
- sources[c] = tmp;
- heap(sources, c, max);//每次交换,重新调整,满足"大顶堆"要求
- }
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- int[] sources = {11,0,20,8,13,3,4,7};
- sort(sources,sources.length);
- System.out.println(Arrays.toString(sources));
- }
- }
五.选择排序/交换排序
特点:每次遍历"无序区域"时,找到一个最小的值,并和"无序区域"的第一个元素交换位置,至此"无序区域"的剩余元素,继续执行上述遍历过程..它和"冒泡排序"异曲同工.【从无序区中“选择”出最小的元素,交换到“无序区”的头部】
场景:算法不稳定,元素个数较小时,时间复杂度O(n^2),空间复杂度O(1)
- 原始数组:[4,3,10,6,2,1]
- 过程:将数组分为“有序区”,“无序区”,每次遍历都从“无序区”找到最小的元素“交换”到“有序区”的最前面
- ------------->[]4,3,10,6,2,1;初始时有序区为空(实现有所差异)
- ---->[1],4,3,10,6,2 当前无序区中,1为最小,那么把1放在“无序区”的最前面,我们也可以认为1位于有序区的最后面
- ---->[1,2],4,3,10,6 将2放在“无序区”的最前面,也可以认为为“有序区”的最后面
- ---->[1,2,3]4,10,6
- ---->[1,2,3,4],10,6
- ---->[1,2,3,4,6],10
- ....
- public class SelectSort {
- public static void sort(int[] sources){
- int length = sources.length;
- int n;
- for(int i=0; i < length -1; i++){
- n = i;
- for(int j= i+1; j< length; j++){
- if(sources[j] < sources[i]){
- n = j;
- }
- }
- if(n != i){
- int tmp = sources[i];
- sources[i] = sources[n];
- sources[n] = tmp;
- }
- }
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- int[] sources = {2,15,3,100,87,-1,34,25,77,80,62,11,7,2,55,22};
- sort(sources);
- System.out.println(Arrays.toString(sources));
- }
- }
六.插入排序:
特点:和冒泡排序很像,"有序区域"在数组的前部,依次遍历"无序区域"中的元素,并将"无序区域"中的第一个元素,和"有序区域"中的元素比较(从后往前),并将此元素不断向前"推进".它和“选择排序”也很相似。[依次将无序区中的元素“插入”到有序区中]
场景:算法稳定,元素格式较小时,时间复杂度O(n^2),空间复杂度O(1)
- 原始数组:[4,3,10,6,2,1]
- 过程:和“选择排序”很像,只不过“无序区”中的元素是和“有序区”比较(选择排序,是从无序区中“选择”最小的,放入有序区),然后一次在“有序区”中交换位置。
- ------------->[4],3,10,6,2,1;初始时有序区为空也可以为第一个元素(实现有所差异)
- ---->[3,4],10,6,2,1 首先将无序区中的3,和有序区中的4比较,并交换位置,此时3进入有序区
- ---->[3,4,10],6,2,1 将10与[3,4]从后往前比较,并交换位置
- ---->[3,4,6,10],2,1
- ---->[2,3,4,6,10],1
- ....
- public class InsertSort {
- public static void sort(int[] sources){
- int length = sources.length;
- int n;
- for(int i = 1; i < length; i++){
- n = i - 1;
- int cv = sources[i];//当前需要比较的元素
- //依次遍历此元素所在位置之前的元素集合(此集合为已排序的集合)
- while(n >=0 && cv < sources[n]){
- //如果当前元素,比"已排序集合"的元素值小
- //往前交换位置,类似于"冒泡"
- sources[n+1] = sources[n];
- sources[n] = cv;
- n--;
- }
- }
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- int[] sources = {0,2,15,3,100,87,-1,34};
- sort(sources);
- System.out.println(Arrays.toString(sources));
- }
- }
七.希尔排序
特点:"列排序",将数组数据,在逻辑上分成“多个列”,然后每一列排序。每次遍历成功后,列数减半,继续排序,直到最后为一列时,进行一次插入排序。速度比“插入排序”要快,因为减少了元素交换的次数,是“插入排序”的改进版本。
场景:算法不稳定,元素个数较小时,时间复杂度O(n*logn),空间复杂度O(n^s),其中s为组数。
- 原始数组:[4,3,10,6,2,1,8,5]
- 过程:"列"排序,依次将数组,分为N个列(length/2),然后对每一列进行排序。直到最后列数为1.(每次排序之后,列数减半)
- ------------>8个元素,分为4列
- 4,3,10,6
- 2,1,8,5
- ----->对每一列进行排序(竖向)
- 2,1,8,5
- 4,3,10,6
- 此时数组为[2,1,8,5,4,3,10,6]
- ----->然后分为2列(4列变为2列,列数减半)
- 2,1
- 8,5
- 4,3
- 10,6
- ----->排序
- 2,1
- 4,3
- 8,5
- 10,6
- 此时数组为[2,1,4,3,8,5,10,6]
- ------>然后为1列,直接对数组进行“插入排序”即可
- public class ShellSort {
- /**
- * 我们可以简单的认为shell排序就是“列排序”
- * @param sources
- */
- public static void sort(int[] sources){
- int l = sources.length;
- int i = l;
- do{
- i = i/2;//列数,“在逻辑上”有多少列数据,
- insert(sources,i,l);
- }while(i > 1);
- }
- private static void insert(int[] sources,int i,int length){
- int j;
- //i为当前的列数
- //lenght:为总数据两
- //j为当前排序时,在一列中所处的位置
- for(int t = i;t < length; t++){
- j = t - i;
- int cv = sources[t];
- while(j >=0 && cv < sources[j]){
- sources[j + i] = sources[j];
- sources[j] = cv;
- j = j-i;
- }
- }
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- int[] sources = {2,15,3,100,87,3,-1,3,0};
- sort(sources);
- System.out.println(Arrays.toString(sources));
- }
- }