【分布式】分布式事务原理与实践

简介: 原文地址:https://yq.aliyun.com/articles/69211?spm=5176.100240.searchblog.8.KHdxRg 这里只用于学习和记录。 事务简介 事务的核心是锁和并发,采用同步控制的方式保证并发的情况下性能尽可能高,且容易理解。

原文地址:https://yq.aliyun.com/articles/69211?spm=5176.100240.searchblog.8.KHdxRg

这里只用于学习和记录。


事务简介

事务的核心是锁和并发,采用同步控制的方式保证并发的情况下性能尽可能高,且容易理解。这种方式的优势是方便理解;它的劣势是性能比较低。

计算机可以简单的理解为一个标准的打字机,尽管看起来计算机可以并行处理很多事情,但实际上每个CPU单位时间内只能做一件事,要么读取数据、要么计算数据、要么写入数据,所有的任务都可以看成这三件事的集合。计算机的这种特性引出了一个问题:当多个人去读、算、写操作时,如果不加访问控制,系统势必会产生冲突。而事务相当于在读、算、写操作之外增加了同步的模块,进而保证只有一个线程进入事务当中,而其他线程不会进入。

单个事务单元

事务的四大特性分别是:原子型、一致性、隔离性和持久性。其中原子性指的是事务中包含的所有操作要么全做,要么全不做;一致性是指在事务开始以前,数据库处于一致性的状态,事务结束后,数据库也必须处于一致性的状态;隔离性要求系统必须保证事务不受其他并发执行的事务的影响;持久性是指一个事务一旦成功完成,它对数据库的改变必须是永久的,即使是在系统遇到故障的情况下也不会丢失,数据的重要性决定了事务的持久性的重要。

 dad1641a2e64880d7ac062eadf9d6adbc6d68308 

事务单元是通过Begin-Traction,然后CommitBegin-TractionCommitRollback之间所有针对数据的写入、读取的操作都应该添加同步访问),BeginCommit之间就是一个同步的事务单元。例如,BobSmith 100块钱就是一个事务单元,这个过程中有很多步操作,具体如上图所示;但对业务来说,仅是一个转账的操作。

一组事务单元

ad8567bbdabd094fc2bc67faf555592a0cb85364 

当三个账户都在进行转账操作时,每个操作都涉及Smith账户,所有的事务都会排队,形成一组事务单元。

事务单元之间的Happen-Before关系中的四种可能性:读写、写读、读读、写写。所有事务之间的关系都可以抽象成这四种之一,来对应现在所有的业务逻辑处理。在此基础之上,需要用最快的速度处理多个事务单元之间的关系,同时还能保障这四种操作的逻辑顺序。

单个事务单元的其他例子

除了转账操作是事务单元外,诸如商品要建立一个基于GMT_Modified的索引、从数据库中读取一行记录、向数据库中写入一行记录,同时更新这行记录的所有索引、删除整张表等都是一个事务单元。


事务单元的实现方式

774487d00e2809953adac13735f55a4371cf664a 

Two Phase Lock2PL)是数据库中非常重要的一个概念。数据库操作InsertUpdateDelete都是先读再写的操作,例如Insert操作是先读取数据,读取之后判读数据是否存在,如果不存在,则写入该数据,如果数据存在,则返回错误。假设在该场景下没有读操作,只是单纯写入数据,则数据本身并没有事务操作,DeleteUpdate操作与之类似。数据库利用这些操作的特性,在每一次查询过程中,只要查到数据,就会在该数据上加锁。理论上,所有被读取的数据都已加锁,不会再被其他人读到,也就是说对数据进行的中间操作状态对所有人都不可见,当所有中间状态完成后,提交操作时,解开锁,此时数据对所有系统可见,例如在转账过程中,所有人只能看到两种状态:开始时,A有钱,B没钱;结束时,B有钱,A没钱,而中间A减掉钱,B尚未加上钱的状态被锁隐藏掉了,这个操作就是数据库中处理事务的最标准的方式。如上图所示:事务中的Trx2JoeLock)与其他事务不相关,因此可以并行执行;Trx1需要Lock两个数据BoblockSmithlock,而Trx3同样需要Lock这两个数据,因此Trx3必须等待,且等待在Boblock上;Joe事务会先结束,Trx3会等到Trx1完成后才会开始。


处理事务的常见方法

处理事务的常见方法有排队法、排他锁、读写锁、MVCC等方式,下面来一一解析。

排队法

25b87cf81c9a3f036435259ab0e30f91ec2b0191 

事务处理中最重要也是最简单的方案是排队法,单线程地处理一堆数据。在Redis中,如果数据全部在内存中,则单线程处理所有PutGet操作效率最高。这是因为多线程本质是CPU模拟多个线程,这种模拟是以上下文切换为代价,而对于内存的数据库来说,没有上下文切换时效率最高。因此,单个CPU绑定一块内存的数据,针对这块数据做多次读写操作时都是在单个CPU上完成的,单线程处理方式在内存的情况是效率是最优的。

那么什么时候事务需要用到多线程呢?这个问题的本质取决于下层所使用的存储,如果是内存操作,则可以动态地申请和销毁内存块;而磁盘的IOPS很低,但吞吐量很高。如果一个场景涉及多次读写操作,单线程可以很高的效率对于内存进行读写操作;但是,由于磁盘的IOPS仅为内存的几千分之一,如果依旧用操作内存的方式操作磁盘,那系统的整体性能将会很低,这意味着必须将大量的读写操作聚合成一个Batch后再提交时才能达到较好的性能。而将大量请求攒到一起的方式一是异步,也就是请求本身和线程不绑定,线程可以不Block(本质来说还是一种多线程的方式),处理完一个线程后再处理其他线程。这种做法的核心是将大量不同的请求提交到一个Buffer中,再由该Buffer统一读取或者写入磁盘,从而提高效率。在慢速设备中,多线程或异步非常常见,在设计系统时,面对磁盘、网络、SSD等慢速设备必须考虑使用多线程。

排他锁

f6565989422f38604d13e0910e09a88fc1cddda2 

有些场景不适合用单线程操作,可以利用排他锁的方式来快速隔离并发读写事务。数据库中有一些事务单元是共享的,如图中的事务单元1是共享的,事务单元2/3共享数据;针对事务单元2/3共享数据的所有读写Block住,事务单元1单独用一个锁来控制,用这种方式完成系统的访问控制。

读写锁

46769c09018c7ac199e7520dd5e4735bdf39458c 

如果是一个只读的事务,例如只对数据进行查询操作,在该过程中数据一定不被修改,因此多个查询操作可以并行执行,因此一种针对读读场景的优化自然而然产生——读写锁。读写锁的核心是在多次读的操作中,同时允许多个读者来访问共享资源,提高并发性。

MVCC

a1251eb42b581c02f5252a8c6b35ec3c8c969a8d 

在最初的数据库事务实现中是不存在MVCC的,它是Oracle在八十年代新加的功能,本质是Copy On Write,也就是每次写都是以重新开始一个新的版本的方式写入数据,因此,数据库中也就包含了之前的所有版本。在数据读的过程中,先申请一个版本号,如果该版本号小于正在写入的版本号,则数据一定可以查询到,无需等到新版本完全写完即可返回查询结果。这种方式可以在读读不阻塞的前提下,实现读写/写读不阻塞,尽可能保证所有的读操作并行,而写操作串行。


事务的调优原则

事务的调优的思路是在不影响业务应用的前提下:

第一,尽可能减少锁的覆盖范围,例如Myisam表锁到Innodb的行锁就是一个减少锁覆盖范围的过程;对于原位锁(排他锁、读写锁等)可变为MVCC多版本(本质仍然是减少锁的范围)。

第二,增加锁上可并行的线程数,例如读锁和写锁的分离,允许并行读取数据。

第三,选择正确锁类型,其中悲观锁适合并发争抢比较严重的场景;乐观锁适合并发争抢不太严重的场景。

目录
相关文章
|
5天前
|
存储 Dubbo Java
分布式 RPC 底层原理详解,看这篇就够了!
本文详解分布式RPC的底层原理与系统设计,大厂面试高频,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式 RPC 底层原理详解,看这篇就够了!
|
2月前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
3年前的云栖大会,我们发布分布式云容器平台ACK One,随着3年的发展,很高兴看到ACK One在混合云,分布式云领域帮助到越来越多的客户,今天给大家汇报下ACK One 3年来的发展演进,以及如何帮助客户解决分布式领域多云多集群管理的挑战。
阿里云容器服务 ACK One 分布式云容器企业落地实践
|
1月前
|
消息中间件 存储 算法
分布式系列第二弹:分布式事务!
分布式系列第二弹:分布式事务!
|
1月前
|
分布式计算 Hadoop 网络安全
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
30 1
|
1月前
|
存储 机器学习/深度学习 缓存
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
44 1
|
1月前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
97 0
|
2月前
|
网络协议 安全 Java
分布式(基础)-RMI的原理
分布式(基础)-RMI的原理
|
3月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
88 0
|
1月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
3月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
112 2
基于Redis的高可用分布式锁——RedLock

热门文章

最新文章