Windows Phone开发(5):室内装修

简介: 原文: Windows Phone开发(5):室内装修 为什么叫室内装修呢?呵呵,其实说的是布局,具体些嘛,就是在一个页面中,你如何去摆放你的控件,如何管理它们,你说,像不像我们刚搬进新住所,要“装修”一番?买一套什么样的茶几和杯具(我说的“杯具”指的是原意,不要理解错了),或者沙发什么的,该怎么放,摆在哪里好看,其实,我们做界面设计也是差不多这个道理。
原文: Windows Phone开发(5):室内装修

为什么叫室内装修呢?呵呵,其实说的是布局,具体些嘛,就是在一个页面中,你如何去摆放你的控件,如何管理它们,你说,像不像我们刚搬进新住所,要“装修”一番?买一套什么样的茶几和杯具(我说的“杯具”指的是原意,不要理解错了),或者沙发什么的,该怎么放,摆在哪里好看,其实,我们做界面设计也是差不多这个道理。

相信我们下过象棋就知道,棋盘上有横向的,纵向的很多网格线,而棋子就是参照这些网格线来放置的,对,在WP页面布局中我们把这样的布局称为网格布局,对应的控件为Grid。

千万别小看这个Grid控件,它可是非常好用的,而且也比较灵活,对的,当我们创建一个新页面时,VS为我们生生的XAML中,正是使用了Grid控件进行布局的。

既然是网格了,肯定会有行和列的,而我们的控件就是按需要放到由这些行和列共同产生的单元格中,就是我们在做网页排版时用到的table标签,应该说是非常类似的。

下面我们一起动手做个小练习,通过这个练习,我们可以从一种更直观的角度去了解Grid控件的用法。

1、启动VS,新建一个WP应用程序,不用我多说了,都会了。

2、删除页面中的根Grid,整个删除。如下图所示。

 

3、然后,替换为以下XAML代码。

    <Grid x:Name="Root">
        <Grid.ColumnDefinitions>
            <ColumnDefinition Width="*"/>
            <ColumnDefinition Width="*"/>
        </Grid.ColumnDefinitions>
        <Grid.RowDefinitions>
            <RowDefinition Height="*"/>
            <RowDefinition Height="*"/>
        </Grid.RowDefinitions>
    </Grid>

 

这样我们就定义了一个两行两列的网格布局,也就是整个页面被划分为4个方块。
先简单说一下行的高,列的宽的表示方法,如果你用过WPF,你应该很清楚了。
(1)可以用数值,double类型,如120.667,这个数字与屏幕分辨率无关,运行运行库会自行调整;

(2)*:这个星号是什么意思呢?就像上面的例子,我都用了*,这么说是说不清楚的,我举个例子吧。
比如,我把一个网格分为3行,而每一行的高度都是*,则表示三个行的高度是平均分配的,都占整个网格高度的1/3.
如果我第一行的高为2*,第二行的高为*,第三行的高为3*,那么又该如何分配呢?
先别急,把上面的代码改一下,我们就可以直观地看到效果了。为了方便观察,我把ShowGridLines的值改为True,这样网格线就会显示。

    <Grid x:Name="Root" ShowGridLines="True">
        <Grid.RowDefinitions>
            <RowDefinition Height="2*"/>
            <RowDefinition Height="*"/>
            <RowDefinition Height="3*"/>
        </Grid.RowDefinitions>
    </Grid>

好,现在我们看看设计视图上面显示的结果。

其实上面三行的高分别为2*,1*和3*,1可以省略,它的意思就是把整个网格的高度平均分成2 + 1 + 3 = 6份,而2*就占其中2份,1*就占其中1份,3*就占其中3份,也就是说,它们分别占总高度的2/6,1/6,3/6.
怎么样,找到规律了吗?
再来一例。

    <Grid x:Name="Root" ShowGridLines="True">
        <Grid.RowDefinitions>
            <RowDefinition Height="3*"/>
            <RowDefinition Height="7*"/>
        </Grid.RowDefinitions>
    </Grid>

这时候,我们再看看设计视图有啥变化?

 

上面的示例是把整个容器的高度平均分为 3 + 7 = 10 份,而第一行的高度占总高度的3/10,第二行的高度占总高度的7/10.
现在明白了一些了没?
再看看下面的例子:

    <Grid x:Name="Root" ShowGridLines="True">
        <Grid.RowDefinitions>
            <RowDefinition Height="86"/>
            <RowDefinition Height="5*"/>
            <RowDefinition Height="3*"/>
        </Grid.RowDefinitions>
    </Grid>

同理,第一行固定86,这是一个绝对的值,然后呢,把剩下的高度,就是除了86之外的,平均分为 5 + 3 = 8 份,第二行占了剩下的高度的5/8,第三行占了剩下的高度的3/8.

(3)Auto,不用多解释,从单词的含义就知道了,就是根内容自动调整。

列的定义与行是相类似的,只不过列定义宽度,行定义高度而已。
如果以上三种值同时出现呢?原理是一样的,自己思考一下吧,不懂的就多写代码观察。

那么,我们如何把内容放到对应的单元格内呢?Grid的行序号和列序号是从0开始的,如第一列就是0,第二行就是1等,具体怎么操作呢?
在声明其内容时,通过附加属性来确定内容应放在哪个单元格,如下面例子。

    <Grid x:Name="Root" ShowGridLines="True">
        <Grid.RowDefinitions>
            <RowDefinition Height="*"/>
            <RowDefinition Height="*"/>
        </Grid.RowDefinitions>
        <Grid.ColumnDefinitions>
            <ColumnDefinition Width="*"/>
            <ColumnDefinition Width="*"/>
        </Grid.ColumnDefinitions>
        <!-- 内容 -->
        <TextBlock Grid.Column="0" Grid.Row="0" Text="第1行第1列" FontSize="35"/>
        <Rectangle Fill="Yellow" Grid.Column="1" Grid.Row="0" Margin="68"/>
        <Button Grid.Column="0" Grid.Row="1" Content="第2行第1列" FontSize="32"/>
        <Ellipse Fill="Blue" Height="95" Width="180" Grid.Column="1" Grid.Row="1"/>
    </Grid>

运行效果如下:

 

 

好了,网格布局就吹到这里,下面接着看另一个较简单的布局——StackPanel,嗯,它是一个面板,它的子内容的布局非常简单,就两种方式:横向和纵向,它是沿直线分布的,要么水平,要么垂直,反正是线性分布,就类似于我们说的数据结构中的栈队列,先进后出。
例一,水平布局。

    <StackPanel Orientation="Horizontal" Height="100">
        <Button Content="按钮1"/>
        <Button Content="按钮2"/>
        <Button Content="按钮3"/>
    </StackPanel>

效果如下:

 

例二:垂直布局。

    <StackPanel Orientation="Vertical" Width="300">
        <TextBlock Text="文本一" FontSize="80"/>
        <TextBlock Text="文本二" FontSize="80"/>
        <TextBlock Text="文本三" FontSize="80"/>
    </StackPanel>


运行效果如下:
(图6)运行效果如下:

 

最后,我们来看看还有一种通过绝对定位的布局控件——Canvas。
它就像我们的二维坐标系,但与我们在平面几何中不同的是,Canvas的原点在左上角,相信写过可视化程序的朋友都知道了。
要注意的是,Canvas不知道具体要为哪些子内容设置坐标,所以,它的Top和Left值视具体情况而定,因此这两个属性都是附加属性,也就是它附加在放置在Canvas中的子元素要设置的具本位置而使用,所以每个子元素的定位都通过附加的Canvas.Top和Canvas.Left来设置。

    <Canvas>
        <Rectangle Fill="Orange" Canvas.Left="37" Canvas.Top="116" Height="165" Width="220" />
        <Path Data="M0,0 L0,8 L12,8 Z" Fill="Silver"
              Canvas.Left="127"
              Canvas.Top="204"
              Width="260"
              Height="235" Stretch="Fill"/>
    </Canvas>


 

还有的是,ZIndex是用于设置子元素的顺序,从0开始,默认为0,值越大,它越在顶层,比如上面的例子,我们发现,后面添加的三角形把前一个矩形挡住了,那如何让矩形在其它图形之上呢?对,把ZIndex设置一个较大的值就行了,如:

    <Canvas>
        <Rectangle Fill="Orange" Canvas.Left="37" Canvas.Top="116"
                   Height="165" Width="220"
                   Canvas.ZIndex="1"/>
        <Path Data="M0,0 L0,8 L12,8 Z" Fill="Silver"
              Canvas.Left="127"
              Canvas.Top="204"
              Width="260"
              Height="235" Stretch="Fill"/>
    </Canvas>





 

目录
相关文章
|
1月前
|
数据可视化 数据库 C++
Qt 5.14.2揭秘高效开发:如何用VS2022快速部署Qt 5.14.2,打造无与伦比的Windows应用
Qt 5.14.2揭秘高效开发:如何用VS2022快速部署Qt 5.14.2,打造无与伦比的Windows应用
|
12天前
|
监控 安全 API
7.3 Windows驱动开发:内核监视LoadImage映像回调
在笔者上一篇文章`《内核注册并监控对象回调》`介绍了如何运用`ObRegisterCallbacks`注册`进程与线程`回调,并通过该回调实现了`拦截`指定进行运行的效果,本章`LyShark`将带大家继续探索一个新的回调注册函数,`PsSetLoadImageNotifyRoutine`常用于注册`LoadImage`映像监视,当有模块被系统加载时则可以第一时间获取到加载模块信息,需要注意的是该回调函数内无法进行拦截,如需要拦截则需写入返回指令这部分内容将在下一章进行讲解,本章将主要实现对模块的监视功能。
29 0
7.3 Windows驱动开发:内核监视LoadImage映像回调
|
4月前
|
监控 安全 API
7.2 Windows驱动开发:内核注册并监控对象回调
在笔者上一篇文章`《内核枚举进程与线程ObCall回调》`简单介绍了如何枚举系统中已经存在的`进程与线程`回调,本章`LyShark`将通过对象回调实现对进程线程的`句柄`监控,在内核中提供了`ObRegisterCallbacks`回调,使用这个内核`回调`函数,可注册一个`对象`回调,不过目前该函数`只能`监控进程与线程句柄操作,通过监控进程或线程句柄,可实现保护指定进程线程不被终止的目的。
29 0
7.2 Windows驱动开发:内核注册并监控对象回调
|
4月前
|
监控 安全 API
7.6 Windows驱动开发:内核监控FileObject文件回调
本篇文章与上一篇文章`《内核注册并监控对象回调》`所使用的方式是一样的都是使用`ObRegisterCallbacks`注册回调事件,只不过上一篇博文中`LyShark`将回调结构体`OB_OPERATION_REGISTRATION`中的`ObjectType`填充为了`PsProcessType`和`PsThreadType`格式从而实现监控进程与线程,本章我们需要将该结构填充为`IoFileObjectType`以此来实现对文件的监控,文件过滤驱动不仅仅可以用来监控文件的打开,还可以用它实现对文件的保护,一旦驱动加载则文件是不可被删除和改动的。
29 1
7.6 Windows驱动开发:内核监控FileObject文件回调
|
4月前
|
监控 安全 API
6.9 Windows驱动开发:内核枚举进线程ObCall回调
在笔者上一篇文章`《内核枚举Registry注册表回调》`中我们通过特征码定位实现了对注册表回调的枚举,本篇文章`LyShark`将教大家如何枚举系统中的`ProcessObCall`进程回调以及`ThreadObCall`线程回调,之所以放在一起来讲解是因为这两中回调在枚举是都需要使用通用结构体`_OB_CALLBACK`以及`_OBJECT_TYPE`所以放在一起来讲解最好不过。
41 1
6.9 Windows驱动开发:内核枚举进线程ObCall回调
|
4月前
|
监控 安全 API
6.8 Windows驱动开发:内核枚举Registry注册表回调
在笔者上一篇文章`《内核枚举LoadImage映像回调》`中`LyShark`教大家实现了枚举系统回调中的`LoadImage`通知消息,本章将实现对`Registry`注册表通知消息的枚举,与`LoadImage`消息不同`Registry`消息不需要解密只要找到`CallbackListHead`消息回调链表头并解析为`_CM_NOTIFY_ENTRY`结构即可实现枚举。
48 1
6.8 Windows驱动开发:内核枚举Registry注册表回调
|
4月前
|
存储 API 开发者
6.7 Windows驱动开发:内核枚举LoadImage映像回调
在笔者之前的文章`《内核特征码搜索函数封装》`中我们封装实现了特征码定位功能,本章将继续使用该功能,本次我们需要枚举内核`LoadImage`映像回调,在Win64环境下我们可以设置一个`LoadImage`映像加载通告回调,当有新驱动或者DLL被加载时,回调函数就会被调用从而执行我们自己的回调例程,映像回调也存储在数组里,枚举时从数组中读取值之后,需要进行位运算解密得到地址。
32 1
6.7 Windows驱动开发:内核枚举LoadImage映像回调
|
4月前
|
监控 安全 API
7.5 Windows驱动开发:监控Register注册表回调
在笔者前一篇文章`《内核枚举Registry注册表回调》`中实现了对注册表的枚举,本章将实现对注册表的监控,不同于32位系统在64位系统中,微软为我们提供了两个针对注册表的专用内核监控函数,通过这两个函数可以在不劫持内核API的前提下实现对注册表增加,删除,创建等事件的有效监控,注册表监视通常会通过`CmRegisterCallback`创建监控事件并传入自己的回调函数,与该创建对应的是`CmUnRegisterCallback`当注册表监控结束后可用于注销回调。
45 0
7.5 Windows驱动开发:监控Register注册表回调
|
4月前
|
存储 安全 数据安全/隐私保护
3.2 Windows驱动开发:内核CR3切换读写内存
CR3是一种控制寄存器,它是CPU中的一个专用寄存器,用于存储当前进程的页目录表的物理地址。在x86体系结构中,虚拟地址的翻译过程需要借助页表来完成。页表是由页目录表和页表组成的,页目录表存储了页表的物理地址,而页表存储了实际的物理页框地址。因此,页目录表的物理地址是虚拟地址翻译的关键之一。在操作系统中,每个进程都有自己的地址空间,地址空间中包含了进程的代码、数据和堆栈等信息。为了实现进程间的隔离和保护,操作系统会为每个进程分配独立的地址空间。在这个过程中,操作系统会将每个进程的页目录表的物理地址存储在它自己的CR3寄存器中。当进程切换时,操作系统会修改CR3寄存器的值,从而让CPU使用新的页
48 0
3.2 Windows驱动开发:内核CR3切换读写内存
|
4月前
|
编译器 C++ Windows
9.4 Windows驱动开发:内核PE结构VA与FOA转换
本章将继续探索内核中解析PE文件的相关内容,PE文件中FOA与VA,RVA之间的转换也是很重要的,所谓的FOA是文件中的地址,VA则是内存装入后的虚拟地址,RVA是内存基址与当前地址的相对偏移,本章还是需要用到`《内核解析PE结构导出表》`中所封装的`KernelMapFile()`映射函数,在映射后对其PE格式进行相应的解析,并实现转换函数。
40 0
9.4 Windows驱动开发:内核PE结构VA与FOA转换