《BI项目笔记》增量ETL数据抽取的策略及方法

简介: 原文:《BI项目笔记》增量ETL数据抽取的策略及方法增量抽取 增量抽取只抽取自上次抽取以来数据库中要抽取的表中新增或修改的数据。在ETL使用过程中。增量抽取较全量抽取应用更广。如何捕获变化的数据是增量抽取的关键。
原文: 《BI项目笔记》增量ETL数据抽取的策略及方法

增量抽取 增量抽取只抽取自上次抽取以来数据库中要抽取的表中新增或修改的数据。在ETL使用过程中。增量抽取较全量抽取应用更广。如何捕获变化的数据是增量抽取的关键。对捕获方法一般有两点要求:准确性,能够将业务系统中的变化数据按一定的频率准确地捕获到;性能,不能对业务系统造成太大的压力,影响现有业务。目前增量数据抽取中常用的捕获变化数据的方法有:
a.触发器:在要抽取的表上建立需要的触发器,一般要建立插入、修改、删除三个触发器,每当源表中的数据发生变化,就被相应的触发器将变化的数据写入一个临时表,抽取线程从临时表中抽取数据,临时表中抽取过的数据被标记或删除。触发器方式的优点是数据抽取的性能较高,缺点是要求业务表建立触发器,对业务系统有一定的影响。

b.时间戳:它是一种基于快照比较的变化数据捕获方式,在源表上增加一个时间戳字段,系统中更新修改表数据的时候,同时修改时间戳字段的值。当进行数据抽取时,通过比较系统时间与时间戳字段的值来决定抽取哪些数据。有的数据库的时间戳支持自动更新,即表的其它字段的数据发生改变时,自动更新时间戳字段的值。有的数据库不支持时间戳的自动更新,这就要求业务系统在更新业务数据时,手工更新时间戳字段。同触发器方式一样,时间戳方式的性能也比较好,数据抽取相对清楚简单,但对业务系统也有很大的倾入性(加入额外的时间戳字段),特别是对不支持时间戳的自动更新的数据库,还要求业务系统进行额外的更新时间戳操作。另外,无法捕获对时间戳以前数据的delete和update操作,在数据准确性上受到了一定的限制。

c.全表比对:典型的全表比对的方式是采用MD5校验码。ETL工具事先为要抽取的表建立一个结构类似的MD5临时表,该临时表记录源表主键以及根据所有字段的数据计算出来的MD5校验码。每次进行数据抽取时,对源表和MD5临时表进行MD5校验码的比对,从而决定源表中的数据是新增、修改还是删除,同时更新MD5校验码。MD5方式的优点是对源系统的倾入性较小(仅需要建立一个MD5临时表),但缺点也是显而易见的,与触发器和时间戳方式中的主动通知不同,MD5方式是被动的进行全表数据的比对,性能较差。当表中没有主键或唯一列且含有重复记录时,MD5方式的准确性较差。

d.日志对比:通过分析数据库自身的日志来判断变化的数据。Oracle的改变数据捕获(CDC,ChangedDataCapture)技术是这方面的代表。CDC特性是在Oracle9i数据库中引入的。CDC能够帮助你识别从上次抽取之后发生变化的数据。利用CDC,在对源表进行insert、update或delete等操作的同时就可以提取数据,并且变化的数据被保存在数据库的变化表中。这样就可以捕获发生变化的数据,然后利用数据库视图以一种可控的方式提供给目标系统。CDC体系结构基于发布者/订阅者模型。发布者捕捉变化数据并提供给订阅者。订阅者使用从发布者那里获得的变化数据。通常,CDC系统拥有一个发布者和多个订阅者。发布者首先需要识别捕获变化数据所需的源表。然后,它捕捉变化的数据并将其保存在特别创建的变化表中。它还使订阅者能够控制对变化数据的访问。订阅者需要清楚自己感兴趣的是哪些变化数据。一个订阅者可能不会对发布者发布的所有数据都感兴趣。订阅者需要创建一个订阅者视图来访问经发布者授权可以访问的变化数据。CDC分为同步模式和异步模式,同步模式实时的捕获变化数据并存储到变化表中,发布者与订阅都位于同一数据库中。异步模式则是基于Oracle的流复制技术。

综上所述:本BI项目中采取时间戳方式.

目录
相关文章
|
7月前
|
传感器 数据可视化 搜索推荐
瓴羊Quick BI助力深圳光明环境水务公司举办水务数据应用大会暨第二届“光环杯”BI应用大赛
瓴羊Quick BI助力深圳光明环境水务公司举办水务数据应用大会暨第二届“光环杯”BI应用大赛
142 0
|
存储 数据可视化 大数据
彻底搞定数据产品选型-报表平台、BI平台、大数据平台、数据中台一网打尽
彻底搞定数据产品选型-报表平台、BI平台、大数据平台、数据中台一网打尽
|
存储 数据可视化 数据挖掘
【数据可视化和BI技术】数据可视化和BI技术的原理、方法和工具,如Tableau、Power BI
【数据可视化和BI技术】数据可视化和BI技术的原理、方法和工具,如Tableau、Power BI
274 0
|
17天前
|
供应链 监控 安全
基于Quick BI的多部门组织下的数据共享及管理方案
本文介绍了企业在使用Quick BI时面临的数据共享与安全控制需求,涵盖技术、财务、销售等部门的具体挑战,并提出了基于角色组授权、工作空间隔离、行级权限管理等解决方案,确保数据既能高效共享又能安全可控。
130 5
基于Quick BI的多部门组织下的数据共享及管理方案
|
1月前
|
人工智能 算法 BI
聚焦AI与BI融合,引领数智化新潮流 | 【瓴羊数据荟】瓴羊数据Meet Up城市行第一站完美收官!
当BI遇见AI,洞见变得触手可及 —— 瓴羊「数据荟」数据Meet Up城市行·杭州站启幕,欢迎参与。
416 5
聚焦AI与BI融合,引领数智化新潮流 | 【瓴羊数据荟】瓴羊数据Meet Up城市行第一站完美收官!
|
1月前
|
分布式计算 大数据 BI
ClickHouse与大数据生态整合:从ETL到BI报表
【10月更文挑战第27天】在这个数据驱动的时代,企业越来越依赖于数据来做出关键决策。而高效的数据处理和分析能力则是支撑这一需求的基础。作为一位数据工程师,我有幸参与到一个项目中,该项目旨在利用ClickHouse与Hadoop、Spark、Flink等大数据处理框架的整合,构建一个从数据提取(Extract)、转换(Transform)、加载(Load)到最终生成商业智能(BI)报表的全流程解决方案。以下是我在这个项目中的经验和思考。
79 1
|
7月前
|
分布式计算 大数据 BI
MaxCompute产品使用合集之MaxCompute项目的数据是否可以被接入到阿里云的Quick BI中
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
5月前
|
BI API 容器
数据架构问题之BI的早期概念是什么
数据架构问题之BI的早期概念是什么
|
6月前
|
机器学习/深度学习 存储 计算机视觉
【YOLOv8改进】BRA(bi-level routing attention ):双层路由注意力(论文笔记+引入代码)
**BiFormer和HCANet摘要** BiFormer是CVPR2023提出的一种新型视觉Transformer,采用双层路由注意力机制实现动态稀疏注意力,优化计算效率和内存使用,适用于图像分类、目标检测和语义分割任务。代码可在GitHub获取。另一方面,HCANet是针对高光谱图像去噪的深度学习模型,融合CNN和Transformer,强化全局和局部特征建模,通过多尺度前馈网络提升去噪效果。HCANet在HSI数据集上表现优秀,其代码同样开放源代码。
|
7月前
|
存储 BI 数据库
数据洞见未来——瓴羊Quick BI荣获邀请,将亮相OceanBase开发者大会
数据洞见未来——瓴羊Quick BI荣获邀请,将亮相OceanBase开发者大会
87 0

热门文章

最新文章