MySQL with Memcached 简介

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

在传统的环境下,访问信息的速度成为最大的可扩展性问题。为了频繁地访问信息,使用MySQL可能会变得很慢,原因是每一次数据访问,都必须请求执行SQL查询,以从数据库得到信息。这也意味着那些在某些时刻被锁住的或者正阻塞的表,可能延迟你的查询,或者降低了你获取信息的速度。

而memcached则是一个简单的,并且是高可扩展性的,基于key的缓存策略。我们可以用它在任何专用的或者剩余的RAM中存储数据以及对象,以加速程序对这些数据的访问速度。你可以运行memcached在一个甚至多个主机上,然后就可以使用共享的缓存来存储对象。因为,每一个主机的RAM都存储着信息,访问速度就会比从硬盘上加载来得快得多。它的性能比从本地数据库检索、加载数据有显著的提高。

也许只是因为这里的缓存只是一个信息“库”。你可以使用缓存来存储任何数据。包括可能需要大量地创建才能构建的复杂的结构。但在这种“ready-to-use”模式下,有助于减少你的MySQL服务器上的负载。

通常的使用环境是修改你的应用程序来让memcached提供的缓存,存储你需要读取的信息。如果信息不在memcached中,那么它将从MySQL数据库中被加载,然后被写入缓存,以便将来从缓存的数据中取出相同对象的便利。

图 1-1 memcached Architecture Overview

在例子中的结构中,任意的客户端都能够连接到其中的一个memcached服务器来请求一个Key。插图中每一个客户端都可以连接到所有的服务器。对一个客户端来说,如果请求存储数据,那么这个用于引用数据的Key将被“哈希”做散列处理,然后用来选择其中的一个memcached服务器。在连接到服务器之前,对memcached服务器的选择将会在客户端发生,以此来保持处理的“轻量级”。

当一个客户端请求相同的Key时,相同的算法也将被再次使用。相同的Key通常产生相同的哈希值,并且也将选择相同的memcached服务器作为“数据源”。使用这种方式,被缓存的数据可以在所有的memcached服务器之间传播,并且被缓存的数据在任何的客户端都是可访问的。据此可以得出这样的结论:一个分布式的,基于内存的缓存机制,返回信息,特别是复杂的数据、结构比从本地从数据库加载要快得多。

一个memcached服务器所持有的数据将永远不会存储在磁盘上(仅仅只会被存储在内存中,这意味着数据不能够被持久化)。并且“只读存储器”缓存总是从后台存储(比如一个MySQL数据库)来填充它。如果一个memcached服务器“当机”了,那么数据也能够从MySQL数据库中恢复,尽管这样做的速度比从缓存中加载信息慢得多。

在2011年四月,MySQL发布了用于InnoDB以及MySQL簇存储引擎的一个新的memcached接口的预览。

使用memcachedAPI,web服务可以直接访问InnoDB以及MySQL簇存储引擎而不需要使用T-SQL,同时能够确保低延迟和高tuntulde读写查询。那些诸如已经被淘汰的sql解析以及占用更多的服务器硬件资源(CPU、内存、I/O)操作被专门地用来服务于存储引擎本身的查询。

这些都将有针对性地纳入到未来MySQL5.6的里程碑以及MySQL集群开发的发布中去。




原文发布时间为:2011-09-22


本文来自云栖社区合作伙伴CSDN博客,了解相关信息可以关注CSDN博客。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
8天前
|
关系型数据库 MySQL Linux
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
|
9天前
|
SQL Java 关系型数据库
MySQL原理简介—3.生产环境的部署压测
本文介绍了Java系统和数据库在高并发场景下的压测要点: 1. 普通系统在4核8G机器上每秒能处理几百个请求 2. 高并发下数据库建议使用8核16G或更高配置的机器 3. 数据库部署后需进行基准压测,以评估其最大承载能力 4. QPS和TPS的区别及重要性 5. 压测时需关注IOPS、吞吐量、延迟 6. 除了QPS和TPS,还需监控CPU、内存、磁盘IO、网络带宽 7. 影响每秒可处理并发请求数的因素包括线程数、CPU、内存、磁盘IO和网络带宽 8. Sysbench是数据库压测工具,可构造测试数据并模拟高并发场景 9. 在增加线程数量的同时,必须观察机器的性能,确保各硬件负载在合理范围
113 72
|
11天前
|
SQL 存储 关系型数据库
MySQL原理简介—1.SQL的执行流程
本文介绍了MySQL驱动、数据库连接池及SQL执行流程的关键组件和作用。主要内容包括:MySQL驱动用于建立Java系统与数据库的网络连接;数据库连接池提高多线程并发访问效率;MySQL中的连接池维护多个数据库连接并进行权限验证;网络连接由线程处理,监听请求并读取数据;SQL接口负责执行SQL语句;查询解析器将SQL语句解析为可执行逻辑;查询优化器选择最优查询路径;存储引擎接口负责实际的数据操作;执行器根据优化后的执行计划调用存储引擎接口完成SQL语句的执行。整个流程确保了高效、安全地处理SQL请求。
131 75
|
6天前
|
SQL 存储 关系型数据库
MySQL原理简介—9.MySQL索引原理
本文详细介绍了MySQL索引的设计与使用原则,涵盖磁盘数据页的存储结构、页分裂机制、主键索引设计及查询过程、聚簇索引和二级索引的原理、B+树索引的维护、联合索引的使用规则、SQL排序和分组时如何利用索引、回表查询对性能的影响以及索引覆盖的概念。此外还讨论了索引设计的案例,包括如何处理where筛选和order by排序之间的冲突、低基数字段的处理方式、范围查询字段的位置安排,以及通过辅助索引来优化特定查询场景。总结了设计索引的原则,如尽量包含where、order by、group by中的字段,选择离散度高的字段作为索引,限制索引数量,并针对频繁查询的低基数字段进行特殊处理等。
MySQL原理简介—9.MySQL索引原理
|
6天前
|
SQL 监控 关系型数据库
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
|
8天前
|
SQL 缓存 关系型数据库
MySQL原理简介—7.redo日志的底层原理
本文介绍了MySQL中redo日志和undo日志的主要内容: 1. redo日志的意义:确保事务提交后数据不丢失,通过记录修改操作并在系统宕机后重做日志恢复数据。 2. redo日志文件构成:记录表空间号、数据页号、偏移量及修改内容。 3. redo日志写入机制:redo日志先写入Redo Log Buffer,再批量刷入磁盘文件,减少随机写以提高性能。 4. Redo Log Buffer解析:描述Redo Log Buffer的内存结构及刷盘时机,如事务提交、Buffer过半或后台线程定时刷新。 5. undo日志原理:用于事务回滚,记录插入、删除和更新前的数据状态,确保事务可完整回滚。
|
7天前
|
SQL 缓存 关系型数据库
MySQL原理简介—8.MySQL并发事务处理
这段内容深入探讨了SQL语句执行原理、事务并发问题、MySQL事务隔离级别及其实现机制、锁机制以及数据库性能优化等多个方面。
|
10天前
|
存储 SQL 缓存
MySQL原理简介—2.InnoDB架构原理和执行流程
本文介绍了MySQL中更新语句的执行流程及其背后的机制,主要包括: 1. **更新语句的执行流程**:从SQL解析到执行器调用InnoDB存储引擎接口。 2. **Buffer Pool缓冲池**:缓存磁盘数据,减少磁盘I/O。 3. **Undo日志**:记录更新前的数据,支持事务回滚。 4. **Redo日志**:确保事务持久性,防止宕机导致的数据丢失。 5. **Binlog日志**:记录逻辑操作,用于数据恢复和主从复制。 6. **事务提交机制**:包括redo日志和binlog日志的刷盘策略,确保数据一致性。 7. **后台IO线程**:将内存中的脏数据异步刷入磁盘。
|
6天前
|
SQL 关系型数据库 MySQL
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。
|
6天前
|
SQL 存储 关系型数据库
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。

推荐镜像

更多