SQL Server 深入解析索引存储(上)

简介: 原文:SQL Server 深入解析索引存储(上) 标签:SQL SERVER/MSSQL SERVER/数据库/DBA/索引体系结构/堆 概述      最近要分享一个课件就重新把这块知识整理了一遍出来,篇幅有点长,想要理解的透彻还是要上机实践。
原文: SQL Server 深入解析索引存储(上)

标签:SQL SERVER/MSSQL SERVER/数据库/DBA/索引体系结构/堆

概述

     最近要分享一个课件就重新把这块知识整理了一遍出来,篇幅有点长,想要理解的透彻还是要上机实践。

 

 

 

正文

聚集索引

--创建测试数据库
CREATE DATABASE Ixdata
GO
USE [Ixdata]
GO
---创建测试表
CREATE TABLE Orders
(ID INT PRIMARY KEY IDENTITY(1,1),
NAME CHAR(80)NOT NULL,
IDATE DATETIME NOT NULL DEFAULT(GETDATE())
);
GO
---插入1000条测试数据
DECLARE @ID INT=1
WHILE(@ID<=1000)
BEGIN
INSERT INTO Orders(NAME)VALUES('商品'+CONVERT(NVARCHAR(20),@ID))
SET @ID=@ID+1 
END
GO
SELECT * FROM Orders 
GO

分析新创建的表的页的信息

---显示跟踪标志的状态
DBCC TRACESTATUS

---开启跟踪标志
DBCC TRACEON(3604,2588)
--DBCC TRACEOFF(3604,2588)
---获取对象的数据页,结构:数据库、对象、显示
DBCC IND(Ixdata,Orders,-1)

/*
1:显示所有分页的信息,包括IAM分页,数据分页,所有存在的LOB分页和行溢出页,索引分页
-1: 显示所有IAM、数据分页、及指定对象上全部索引的索引分页.
-2: 显示指定对象的所有IAM分页
0:显示所有IAM、数据分页.
*/

DBCC IND的表结构

还可以通过另一种方法来测试:

select so.name, so.object_id, sp.index_id, internals.total_pages, internals.used_pages, internals.data_pages,first_iam_page, 
 first_page, root_page
from sys.objects so
inner join sys.partitions sp on so.object_id = sp.object_id
inner join sys.allocation_units sa on sa.container_id = sp.hobt_id
inner join sys.system_internals_allocation_units internals on internals.container_id = sa.container_id
where so.object_id = object_id('orders')

 最后三个字段分别是IAM页,根页,和第一个数据页;它们分别用16进制来表示,拿first_iam_page来分析,首先将编码从右往左一个字节接着一个字节反过来排行(0X代表16进制),结果就是0X,00 01,00 00 00 50;前两个字节代表文件组号,最后4个字节代表页号。16进制的0001转换成10进制就是1;16进制的00 00 00 50转换成10进制就是5*16的1次方=5*16=80,所以第一个数据页是4*16+15=79,根页是5*16+9=89 结果和前面的查询出来的结果是一样的。从表格的otal_pages,used_pages,data_pages得到的结果也和前面查询出来的结果是一致的,总分配了17个页,使用了15个页包括13个数据页+1个IAM页+1个索引页。

手绘一张当前表格的聚集索引体系结构图:

分析索引页

---DBCC page的格式为(数据库,文件id,页号,显示)
DBCC page(Ixdata,1,89,3)

 分析结果89页下面的子页总共有13页,每页80条记录,89索引页记录了每页的的键值的最小值,第一页就是id为1-80,第二页81-160,所以当你要找ID为150的数据的时候直接就可以去第90页里面找了。

PAGE HEADER

 分析数据页

通过这些数据我们基本上可以知道90页的基本情况了,包括它的字段长度,上一页、下一页,还有该页的所以记录(这里没有截图出来).

插入20万条记录分析索引结构 

--插入20万条记录分析索引结构 
DECLARE @ID INT=1
WHILE(@ID<=200000)
BEGIN
INSERT INTO Orders(NAME)VALUES('商品'+CONVERT(NVARCHAR(20),@ID))
SET @ID=@ID+1 
END




CREATE TABLE Page
(
  PageFID         TINYINT, 
  PagePID         INT,   
  IAMFID          TINYINT, 
  IAMPID          INT, 
  ObjectID        INT,
  IndexID         TINYINT,
  PartitionNumber TINYINT,
  PartitionID     BIGINT,
  iam_chain_type  VARCHAR(30),    
  PageType        TINYINT, 
  IndexLevel      TINYINT,
  NextPageFID     TINYINT,
  NextPagePID     INT,
  PrevPageFID     TINYINT,
  PrevPagePID     INT 
);
GO
INSERT INTO Page EXEC('DBCC IND(Ixdata,Orders,-1)')

---查询索引页
SELECT  [PageFID]
      ,[PagePID]
      ,[IAMFID]
      ,[IAMPID]
      ,[ObjectID]
      ,[IndexID]
      ,[PartitionNumber]
      ,[PartitionID]
      ,[iam_chain_type]
      ,[PageType]
      ,[IndexLevel]
      ,[NextPageFID]
      ,[NextPagePID]
      ,[PrevPageFID]
      ,[PrevPagePID]
  FROM [Ixdata].[dbo].[Page]
  WHERE PageType=2
  go
 select so.name, so.object_id, sp.index_id, internals.total_pages, internals.used_pages, internals.data_pages,first_iam_page, 
 first_page, root_page
from sys.objects so
inner join sys.partitions sp on so.object_id = sp.object_id
inner join sys.allocation_units sa on sa.container_id = sp.hobt_id
inner join sys.system_internals_allocation_units internals on internals.container_id = sa.container_id
where so.object_id = object_id('orders') 

通过两种方法查询到的索引页的数量是一样的,下面的这种计算方法是2524-2513-1(IAM页)=10,其中807页是root_page页它在第二级,其它的是中间级索引页页就是第一级;页可以通过下面的16进制计算出来,IAM=5*16=80,ROOT_PAGE=3*16*16+2*16+7=807

再分析89页

---DBCC page的格式为(数据库,文件id,页号,显示)
DBCC page(Ixdata,1,89,3)

查询结果总共有269行,页就是269个数据页,orders表总共插入了201000条记录,一个页面存80条记录,就需要2513个页面和上面查询到的data_page是一样的。每个索引页存储269个数据页面就需要(‘select 2513*1.0/269’除不尽加1)10个索引页,查询最后一个索引页2698发现它还没分页共存储了361条记录,总共8*269+361=2513

手绘存储结构 

手绘的有点难看,但是意思差不多表达出来了。

大型对象 (LOB) 列

 根据聚集索引中的数据类型,每个聚集索引结构将有一个或多个分配单元,将在这些单元中存储和管理特定分区的相关数据。每个聚集索引的每个分区中至少有一个 IN_ROW_DATA 分配单元。如果聚集索引包含大型对象 (LOB) 列,则它的每个分区中还会有一个 LOB_DATA 分配单元。如果聚集索引包含的变量长度列超过 8,060 字节的行大小限制,则它的每个分区中还会有一个 ROW_OVERFLOW_DATA 分配单元。

---创建测试表
CREATE TABLE Orderslob
(ID INT PRIMARY KEY IDENTITY(1,1),
NAME CHAR(80)NOT NULL,
Product NVARCHAR(MAX) NOT NULL,
IDATE DATETIME NOT NULL DEFAULT(GETDATE())
);
GO
---插入1000条测试数据
DECLARE @ID INT=1
WHILE(@ID<=1000)
BEGIN
INSERT INTO Orderslob(NAME,Product)VALUES(CONVERT(NVARCHAR(20),@ID)+'商品',REPLICATE(@ID,2))
SET @ID=@ID+1 
END
--REPLICATE(@ID,200)
GO

DBCC IND(Ixdata,Orderslob,1)

--查看2719数据页的信息
DBCC page(Ixdata,1,2719,1)

结果记录了每一条记录的偏移量。

 

每个人在自己的电脑上面测试页面id会不一样,但是反应的结果是一样的。

总结

  本来想全部写完的,等写完这部分的时候发现篇幅已经有点长了,而且自己也有的吃不消熬到1点才写完,接下来还有中下两部分会尽快在几天内写完,欢迎关注。   

 

如果文章对大家有帮助,希望大家能给个推荐,谢谢!!!

 

备注:

    作者:pursuer.chen

    博客:http://www.cnblogs.com/chenmh

本站点所有随笔都是原创,欢迎大家转载;但转载时必须注明文章来源,且在文章开头明显处给明链接,否则保留追究责任的权利。

《欢迎交流讨论》

目录
相关文章
|
3月前
|
SQL 数据可视化 关系型数据库
MCP与PolarDB集成技术分析:降低SQL门槛与简化数据可视化流程的机制解析
阿里云PolarDB与MCP协议融合,打造“自然语言即分析”的新范式。通过云原生数据库与标准化AI接口协同,实现零代码、分钟级从数据到可视化洞察,打破技术壁垒,提升分析效率99%,推动企业数据能力普惠化。
341 3
|
5月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
8月前
|
SQL 存储 关系型数据库
SQL优化策略与实践:组合索引与最左前缀原则详解
本文介绍了SQL优化的多种方式,包括优化查询语句(避免使用SELECT *、减少数据处理量)、使用索引(创建合适索引类型)、查询缓存、优化表结构、使用存储过程和触发器、批量处理以及分析和监控数据库性能。同时,文章详细讲解了组合索引的概念及其最左前缀原则,即MySQL从索引的最左列开始匹配条件,若跳过最左列,则索引失效。通过示例代码,展示了如何在实际场景中应用这些优化策略,以提高数据库查询效率和系统响应速度。
362 10
|
8月前
|
SQL 安全 关系型数据库
SQL注入之万能密码:原理、实践与防御全解析
本文深入解析了“万能密码”攻击的运行机制及其危险性,通过实例展示了SQL注入的基本原理与变种形式。文章还提供了企业级防御方案,包括参数化查询、输入验证、权限控制及WAF规则配置等深度防御策略。同时,探讨了二阶注入和布尔盲注等新型攻击方式,并给出开发者自查清单。最后强调安全防护需持续改进,无绝对安全,建议使用成熟ORM框架并定期审计。技术内容仅供学习参考,严禁非法用途。
1341 0
|
9月前
|
SQL 索引
【YashanDB知识库】字段加上索引后,SQL查询不到结果
【YashanDB知识库】字段加上索引后,SQL查询不到结果
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
2613 10
|
7月前
|
SQL 存储 自然语言处理
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
|
9月前
|
索引
【Flutter 开发必备】AzListView 组件全解析,打造丝滑索引列表!
在 Flutter 开发中,AzListView 是实现字母索引分类列表的理想选择。它支持 A-Z 快速跳转、悬浮分组标题、自定义 UI 和高效性能,适用于通讯录、城市选择等场景。本文将详细解析 AzListView 的核心参数和实战示例,助你轻松实现流畅的索引列表。
471 7
|
10月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
351 2
|
11月前
|
SQL Java 数据库连接
如何在 Java 代码中使用 JSqlParser 解析复杂的 SQL 语句?
大家好,我是 V 哥。JSqlParser 是一个用于解析 SQL 语句的 Java 库,可将 SQL 解析为 Java 对象树,支持多种 SQL 类型(如 `SELECT`、`INSERT` 等)。它适用于 SQL 分析、修改、生成和验证等场景。通过 Maven 或 Gradle 安装后,可以方便地在 Java 代码中使用。
3652 11

推荐镜像

更多
  • DNS