WPF中的三维空间(1)

简介: 原文:WPF中的三维空间(1) WPF中可以创建三维几何图形,支持3D对象的应用,支持从3D Max等软件将3D文件obj导入设计中,但是目前还不支持将材质同时导入,这样需要在WPF中对3D对象重新设置颜色或贴图。
原文: WPF中的三维空间(1)

WPF中可以创建三维几何图形,支持3D对象的应用,支持从3D Max等软件将3D文件obj导入设计中,但是目前还不支持将材质同时导入,这样需要在WPF中对3D对象重新设置颜色或贴图。

2.10.1 WPF中的三维空间

1.三维空间坐标

WPF中二维图形的坐标系原点定位在呈现区域(屏幕)的左上角,其X 轴上的正方向朝右,Y轴的正向朝下。 在WPF的三维坐标系中,原点一般位于在WPF中创建的三维对象的中心(导入的三维对象的情况就不一定了,比如从3DMax中导入的obj文件),三维坐标的X 轴正方向朝右,Y轴的正方向朝上,Z轴的正方向从原点向外朝向观察者。

WPF中的三维空间(1)

2-191 三维空间坐标

2-191给出了WPF三维空间坐标系(X:红色,Y:绿色,Z:蓝色),两个坐标轴之间的弧线表示可以旋转,其中:

Y-Z之间的弧线(红色)表示可以围绕X轴旋转;

X-Z之间的弧线(绿色)表示可以围绕Y轴旋转;

X-Y之间的弧线(蓝色)表示可以围绕Z轴旋转。

2照相机及典型位置

照相机是观察者观察三维对象形态和位置的工具,照相机的位置坐标及与对象的距离直接影响到三维对象的呈现。WPF中的相机有正交相机(OrthographicCamera)和透视(远景)相机(PerspectiveCamera)两类,从观察者的角度来说前者对观察对象没有透视感,远近都一样。后者的工作原理与普通照相机镜头类似,对象离照相机越远,看起来就越小,观察到的对象则有远小近大的效果。

照相机的位置坐标是可以变化的,一个典型的透视相机位置设置如2-192所示。

WPF中的三维空间(1)

2-192 典型的透视相机位置设置

2-192中,当相机位置靠近Z轴中心时,即Z坐标值变小,观察到的对象变大,当相机位置远离Z轴中心时,即Z坐标值变大,观察到的对象变小。

照相机的位置就是观察者的位置,相机的位置可以任意设置,这样观察到的三维对象的“形象”就会发生变化,在三维场景中正确设置相机位置很重要,图2-192是一个典型设置。

3.材料

三维对象使用的材料分三类:

漫射材料:确定三维对象在直射光(白光)照射下的颜色,其作用就如同墙面喷漆一样。

放射材料:使对象产生发光效果。光的颜色由材料的颜色决定。

反射材料:控制三维对象上高光反射区域的颜色。高光反射区域指在金属铬等光滑亮泽表面上看到的光亮区域。

4.光的分类

   照射在三维对象上的光线分为4类,如图2-193所示。

WPF中的三维空间(1)

                                                图2-193 光的分类

1)环境光:环境光将光投向各个方向,使所有对象均匀受光。如果只用环境光,则

对象可能会显得褪色,而且颜色单一。为了获得最佳效果,需要使用其他光。如图2-193左一图。

2)投射光:投射光所投射的光如同聚光灯一般,光从发光位置发出,并在锥形区域内传播。投射光不会影响到位于锥形发光区域以外的那部分三维对象。如图2-193左二图。 

3)定向光:定向光沿着特定的方向均匀平行投射,就像太阳光一样。如图2-193左三图。

4点光:点光从一个点向所有方向投射光,就像普通的灯泡一样。如图2-193右图。

2.10.2 WPF三维空间的元素

    1Viewport3D控件

Expression Blend中提供了Viewport3D控件,这是三维对象元素的上层容器,是相机对象元素Camera、三维图形呈现对象元素ModelVisual3D的集合。添加obj对象到【设计面板】后就自动建立了1Viewport3D控件,在【对象和时间线】面板中可以看到,其中包含下列属性设置:

1Camera:相机,可以在【属性】面板选择以下属性设置:

相机类型:远景相机、正交相机及有关参数;

Position照相机在三维空间中的位置;

Direction照相机在三维空间中的拍摄方向;

UP Vector正向矢量,指定此照相机的“上方”所指的方向。

Perspective Field of View:透视视野,仅适用于远景相机,较小的数值会减少对象因远景拍摄而变形的程度。较大的数值会像使用鱼眼镜头一样导致对象大幅变形。

Near Clipping Plane/Far Clipping Plane近点/远点剪切平面,可控制对象与照相机之间的最近或最远距离,超出上述距离的对象将从所呈现的视图中消失。

2AmbientLight:环境光色彩设置,可以在上述的光类型中选择需要的光源。

3DirectionLight:定向光色彩设置,可以在上述的光类型中选择需要的光源。

4DefaultMaterial:材质设置,可以在前面介绍的材料类型中选择,可以选择图形刷资源。

2ModelVisual3D元素

三维元素ModelVisual3D可以再包含多个ModelVisual3D子元素,比如灯光,三维造型。

3GeometryModel3D元素

GeometryModel3DModelVisual3D子元素内的三维造型元素,材质是其属性,而三维图形构建又由最底层网格元素MeshGeometry3D完成。

4MeshGeometry3D元素

这是1个若干3D点(Point3D的集合,每33D点按一定环绕方向组成1个三角形,WPF采用逆时针的环绕方向,符合所谓“右手法则”,即垂直竖起右手的大拇指,弯曲其余4指,其余4指指向正是三角形的环绕方向,大拇指的指向是三角形的正面,反向是其背面,如图2-194所示,正是这些三角形构成了WPF中的三维造型世界。

WPF中的三维空间(1)
2-194 MeshGeometry3D

2-195是【对象和时间线】面板呈现的1个三维对象元素的列表,可以看出上面所说的三维元素之间的关系。

                           WPF中的三维空间(1)

                                            图2-195 三维对象元素

2-195中有1Viewport3D控件,其中有1Camera元素,1个名为“World”的三维元素ModelVisual3D,这是多个ModelVisual3D元素的集合,“AmbientLightContainer”、“DirectionalLightContainer”和“RootGeometryContainer”均属于ModelVisual3D元素,其中“RootGeometryContainer”元素又包含多个ModelVisual3D子元素,如“Cylinder01”、“Cylinder02”等。“Cylinder01”中又包含GeometryModel3D 元素。





 

目录
相关文章
|
容器
深入理解 Flutter 鸿蒙版的 Stack 布局:适配屏幕与层叠样式布局
Flutter 的 Stack 布局组件允许你将多个子组件层叠在一起,实现复杂的界面效果。本文介绍了 Stack 的基本用法、核心概念(如子组件层叠、Positioned 组件和对齐属性),以及如何使用 MediaQuery 和 LayoutBuilder 实现响应式设计。通过示例展示了照片展示与文字描述、动态调整层叠布局等高级用法,帮助你构建更加精美和实用的 Flutter 应用。
568 2
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
Cesium制作鹰眼效果
这篇文章介绍了如何在Cesium中实现鹰眼(概览)功能,让用户可以从高空视角俯瞰整个三维地理场景。
316 1
Cesium制作鹰眼效果
|
10月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
351 2
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
机器学习/深度学习 传感器 人工智能
深度学习中的图像识别技术及其应用
在人工智能的浪潮中,深度学习已经成为推动技术创新的核心力量。本文将深入探讨深度学习在图像识别领域的应用,从基本原理到实践案例,展示如何通过神经网络模型实现高效准确的图像处理。我们将一起探索卷积神经网络(CNN)的奥秘,并通过实际代码示例,了解如何训练和部署这些模型来解决现实世界的问题。无论你是深度学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供价值丰富的知识和技能。
|
Ubuntu Linux 测试技术
下载ISO镜像的方法 Debian、Red Hat 、CentOS、Ubuntu、Kali Linux🌐
Debian、Red Hat、CentOS、Ubuntu与Kali Linux均为知名Linux发行版。下载Debian须访问官网并按计算机架构选ISO文件。Red Hat下载通常需订阅账户,可从官网登录后获取。CentOS可从官网或镜像站点下载,注意CentOS 8已停更。Ubuntu下载简便,官网直接选取版本及架构即可。Kali Linux专为安全测试设计,官网提供直接下载ISO镜像服务。
3802 0
|
设计模式 开发框架 前端开发
Blazor的技术优点
Blazor的技术优点
513 0
|
机器学习/深度学习 人工智能 数据安全/隐私保护
Playground AI:免费绘画图像创作工具
Playground AI:免费绘画图像创作工具
2778 0
西门子S7-200 SMART如何用存储卡复位CPU出厂设置、固件升级、程序传输
上篇文章中我们学习了西门子S7-200 SMART的全局变量和局部变量以及如何编写带参数子程序并调用,本篇我们来介绍西门子S7-200 SMART使用存储卡复位CPU到出厂设置、固件升级和程序传输。S7-200 SMART CPU使用FAT32文件系统格式,支持容量为4G至32G范围内的标准商用MicroSD HC卡。
西门子S7-200 SMART如何用存储卡复位CPU出厂设置、固件升级、程序传输