C# yield return 用法与解析

简介: 原文:C# yield return 用法与解析C# yield return 用法与解析 本文参考自:http://www.jb51.net/article/54810.htm    当初没有认真理解 yield 这个关键字,现在又遇到了依旧不理解,为了以后不再为了 yield 困惑,决定好好研究一下 yield 的用法与意义: yield 从字面上理解有“退位,屈服”的意思,转一下弯就理解成“权限转移”,也就是将控制权交给别人,在这里就是把集合里满足条件(如果没有过滤条件,就是全体)的个体的操作转移给另一个对象。
原文: C# yield return 用法与解析

C# yield return 用法与解析

本文参考自:http://www.jb51.net/article/54810.htm

 

 当初没有认真理解 yield 这个关键字,现在又遇到了依旧不理解,为了以后不再为了 yield 困惑,决定好好研究一下 yield 的用法与意义:

yield 从字面上理解有“退位,屈服”的意思,转一下弯就理解成“权限转移”,也就是将控制权交给别人,在这里就是把集合里满足条件(如果没有过滤条件,就是全体)的个体的操作转移给另一个对象。

    class Program
    {
        static void Main(string[] args)
        {
            foreach (var item in FilterWithoutYield)
            {
                Console.WriteLine(item);
            }
            Console.ReadKey(); 
        }


        //申明属性,定义数据来源
        public static List<int> Data
        {
            get
            {
                return new List<int>(){1,2,3,4,5,6,7,8};
            }
        }

        //申明属性,过滤器(不适用yield)
        public static IEnumerable<int> FilterWithoutYield
        {
            get
            {
                var result = new List<int>();
                foreach (var i in Data)
                {
                    if (i > 4)
                        result.Add(i);
                }
                return result;
            }
        }
    }

可以看到如果不用yield,要返回大于4的所有的树,就要到另一个集合。而用yield的情况下就不必如此麻烦了:

        //申明属性,过滤器(使用yield)
        public static IEnumerable<int> FilterWithoutYield
        {
            get
            {
                foreach (var i in Data)
                {
                    if (i > 4)
                        yield return i;
                }
            }
        }

为什么会这样呢?

通过单步调试发现:

虽然2种方法的输出结果是一样的,但运作过程迥然不同。第一种方法,是把结果集全部加载到内存中再遍历;第二种方法,客户端每调用一次,yield return就返回一个值给客户端,是"按需供给"。

第一种方法,客户端调用过程大致为:

使用yield return,客户端调用过程大致为:

 

使用yield return为什么能保证每次循环遍历的时候从前一次停止的地方开始执行呢?

--因为,编译器会生成一个状态机来维护迭代器的状态。

简单地说,当希望获取一个IEnumerable<T>类型的集合,而不想把数据一次性加载到内存,就可以考虑使用yield return实现"按需供给"。

目录
相关文章
|
7天前
|
XML 前端开发 C#
C#编程实践:解析HTML文档并执行元素匹配
通过上述步骤,可以在C#中有效地解析HTML文档并执行元素匹配。HtmlAgilityPack提供了一个强大而灵活的工具集,可以处理各种HTML解析任务。
57 19
|
5月前
|
存储 算法 安全
如何控制上网行为——基于 C# 实现布隆过滤器算法的上网行为管控策略研究与实践解析
在数字化办公生态系统中,企业对员工网络行为的精细化管理已成为保障网络安全、提升组织效能的核心命题。如何在有效防范恶意网站访问、数据泄露风险的同时,避免过度管控对正常业务运作的负面影响,构成了企业网络安全领域的重要研究方向。在此背景下,数据结构与算法作为底层技术支撑,其重要性愈发凸显。本文将以布隆过滤器算法为研究对象,基于 C# 编程语言开展理论分析与工程实践,系统探讨该算法在企业上网行为管理中的应用范式。
141 8
|
5月前
|
存储 监控 算法
解析公司屏幕监控软件中 C# 字典算法的数据管理效能与优化策略
数字化办公的时代背景下,企业为维护信息安全并提升管理效能,公司屏幕监控软件的应用日益普及。此软件犹如企业网络的 “数字卫士”,持续记录员工电脑屏幕的操作动态。然而,伴随数据量的持续增长,如何高效管理这些监控数据成为关键议题。C# 中的字典(Dictionary)数据结构,以其独特的键值对存储模式和高效的操作性能,为公司屏幕监控软件的数据管理提供了有力支持。下文将深入探究其原理与应用。
100 4
|
6月前
|
机器学习/深度学习 监控 算法
员工上网行为监控软件中基于滑动窗口的C#流量统计算法解析​
在数字化办公环境中,员工上网行为监控软件需要高效处理海量网络请求数据,同时实时识别异常行为(如高频访问非工作网站)。传统的时间序列统计方法因计算复杂度过高,难以满足低延迟需求。本文将介绍一种基于滑动窗口的C#统计算法,通过动态时间窗口管理,实现高效的行为模式分析与流量计数。
138 2
|
7月前
|
监控 算法 安全
基于 C# 的内网行为管理软件入侵检测算法解析
当下数字化办公环境中,内网行为管理软件已成为企业维护网络安全、提高办公效率的关键工具。它宛如一位恪尽职守的网络守护者,持续监控内网中的各类活动,以确保数据安全及网络稳定。在其诸多功能实现的背后,先进的数据结构与算法发挥着至关重要的作用。本文将深入探究一种应用于内网行为管理软件的 C# 算法 —— 基于二叉搜索树的入侵检测算法,并借助具体代码例程予以解析。
113 4
|
8月前
|
C#
C# Hashtable的用法
哈希表(HashTable)是一种通过键值对直接访问的数据结构。Add 方法用于添加成员,先检查成员是否已存在,若不存在则计算其 ASCII 码值作为散列值并添加到表中。Remove 方法用于移除成员,Size 方法返回集合成员数量。代码实现了这些功能,确保集合操作的高效性。
|
10月前
|
JSON Shell Linux
dockerfile 用法全解析
Dockerfile指令简介:`FROM`基于Alpine镜像;`WORKDIR`设置工作目录;`COPY`复制文件;`ADD`支持URL;`RUN`运行命令;`CMD`容器启动时执行;`ENTRYPOINT`与`CMD`组合执行;`EXPOSE`声明端口;`VOLUME`映射文件;`ENV`设置环境变量;`ARG`构建参数;`LABEL`元数据;`ONBUILD`触发命令;`STOPSIGNAL`停止信号;`HEALTHCHECK`健康检查;`SHELL`默认Shell。Alpine仅5M,小巧高效。
227 4
dockerfile 用法全解析
|
11月前
|
编译器 C# 开发者
C# 9.0 新特性解析
C# 9.0 是微软在2020年11月随.NET 5.0发布的重大更新,带来了一系列新特性和改进,如记录类型、初始化器增强、顶级语句、模式匹配增强、目标类型的新表达式、属性模式和空值处理操作符等,旨在提升开发效率和代码可读性。本文将详细介绍这些新特性,并提供代码示例和常见问题解答。
252 7
C# 9.0 新特性解析
|
10月前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
11月前
|
C# 开发者
C# 10.0 新特性解析
C# 10.0 在性能、可读性和开发效率方面进行了多项增强。本文介绍了文件范围的命名空间、记录结构体、只读结构体、局部函数的递归优化、改进的模式匹配和 lambda 表达式等新特性,并通过代码示例帮助理解这些特性。
199 2

热门文章

最新文章

推荐镜像

更多
  • DNS