Apache Flink流分区器剖析

简介: 这篇文章介绍Flink的分区器,在流进行转换操作后,Flink通过分区器来精确得控制数据流向。 StreamPartitioner StreamPartitioner是Flink流分区器的基类,它只定义了一个抽象方法: public abstract StreamPartition...

这篇文章介绍Flink的分区器,在流进行转换操作后,Flink通过分区器来精确得控制数据流向。

StreamPartitioner

StreamPartitioner是Flink流分区器的基类,它只定义了一个抽象方法:

    public abstract StreamPartitioner<T> copy();

但这个方法并不是各个分区器之间互相区别的地方,定义不同的分区器的核心在于——各个分区器需要实现channel选择的接口方法:

    int[] selectChannels(T record, int numChannels);

该方法针对当前的record以及所有的channel数目,返回一个针对当前这条记录采用的output channel的索引数组。(注意这里返回的是数组,说明一个记录可能会输出到多个channel这点我们后面会谈到)。

该接口方法来自于StreamPartitioner实现的接口ChannelSelector

分区器整体类图:

flink-data-stream-partitioner_class-diagram

GlobalPartitioner

全局分区器,其实现很简单——默认选择了索引为0的channel进行输出。

private int[] returnArray = new int[] { 0 };

@Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,int numberOfOutputChannels) {
    return returnArray;
}

ForwardPartitioner

该分区器将记录转发给在本地运行的下游的(归属于subtask)的operattion。其实现跟上面的GlobalPartitioner一致,就不贴代码了。

ShufflePartitioner

混洗分区器,该分区器会在所有output channel中选择一个随机的进行输出。

private int[] returnArray = new int[1];

@Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,int numberOfOutputChannels) {
    returnArray[0] = random.nextInt(numberOfOutputChannels);
    return returnArray;
}

HashPartitioner

hash分区器,该分区器对key进行hash后计算得到channel索引。它通过构造器获得KeySelector的实例(该实例用来获取当前记录的key)。

获得key后,通过其hashcodenumberOfOutputChannels取模后计算得出最终输出的channel的索引。

    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        Object key;
        try {
            key = keySelector.getKey(record.getInstance().getValue());
        } catch (Exception e) {
            throw new RuntimeException("Could not extract key from " + record.getInstance().getValue(), e);
        }
        returnArray[0] = MathUtils.murmurHash(key.hashCode()) % numberOfOutputChannels;

        return returnArray;
    }

BroadcastPartitioner

广播分区器,用于将该记录广播给下游的所有的subtask。这里采用了两个标记:

  • set
  • setNumber
    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        if (set && setNumber == numberOfOutputChannels) {
            return returnArray;
        } else {
            this.returnArray = new int[numberOfOutputChannels];
            for (int i = 0; i < numberOfOutputChannels; i++) {
                returnArray[i] = i;
            }
            set = true;
            setNumber = numberOfOutputChannels;
            return returnArray;
        }
    }

从上面的实现可见,它返回了一个跟numberOfOutputChannels相等的数组(数组的大小就是即将输出到channel的个数)。

RebalancePartitioner

重平衡分区器,用于实现类似于round-robin这样的轮转模式的分区器。通过累加、取模的形式来实现对输出channel的切换。

    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        this.returnArray[0] = (this.returnArray[0] + 1) % numberOfOutputChannels;
        return this.returnArray;
    }

RescalePartitioner

也是以round-robin的形式将元素分区到下游subtask的子集中。

上游操作所发送的元素被分区到下游操作的哪些子集,依赖于上游和下游操作的并行度。例如,如果上游操作的并行度为2,而下游操作的并行度为4,那么一个上游操作会分发元素给两个下游操作,同时另一个上游操作会分发给另两个下游操作。相反的,如果下游操作的并行度为2,而上游操作的并行度为4,那么两个上游操作会分发数据给一个下游操作,同时另两个上游操作会分发数据给另一个下游操作。

在上下游的并行度不是呈倍数关系的情况下,下游操作会有数量不同的来自上游操作的输入。具体的实现代码同RebalancePartitioner

CustomPartitionerWrapper

自定义分区器包装器,该包装器封装了对于自定义的分区器的实现。自定义的分区测量依赖于Partitioner接口。它提供了自定义分区器的契约。核心接口方法是:

    /**
     * Computes the partition for the given key.
     * 
     * @param key The key.
     * @param numPartitions The number of partitions to partition into.
     * @return The partition index.
     */
    int partition(K key, int numPartitions);

该接口方法的描述很清晰,通过给定的key以及numPartitions返回partition的index.

CustomPartitionerWrapper通过构造器注入Partitioner的实例,然后在selectChannels方法中通过partition接口来获得最终的channel索引。

    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record, int numberOfOutputChannels) {

        K key = null;
        try {
            key = keySelector.getKey(record.getInstance().getValue());
        } catch (Exception e) {
            throw new RuntimeException("Could not extract key from " + record.getInstance(), e);
        }

        returnArray[0] = partitioner.partition(key,
                numberOfOutputChannels);

        return returnArray;
    }

小结

以上的这些分区器,最终会体现在DataStream的API中用来对数据流进行物理分区。




原文发布时间为:2016-06-22


本文作者:vinoYang


本文来自云栖社区合作伙伴CSDN博客,了解相关信息可以关注CSDN博客。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
794 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
454 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
5月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1918 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
6月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
703 6
|
6月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
589 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
SQL 消息中间件 分布式计算
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(上)
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(上)
491 0
|
数据采集 分布式计算 Kubernetes
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(下)
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(下)
489 0
|
存储 SQL 传感器
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析2
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析2
898 0
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析2
|
SQL 消息中间件 分布式计算
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析1
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析1
664 0
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析1
|
SQL 消息中间件 分布式计算
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析3
【Flink】(04)Apache Flink 漫谈系列 —— 实时计算 Flink 与 Alibaba Cloud Realtime Compute 剖析3
318 0

热门文章

最新文章

推荐镜像

更多