Win32串口编程(VC++6.0)-阿里云开发者社区

开发者社区> andyro1984> 正文

Win32串口编程(VC++6.0)

简介:  在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。串口通信方便易行,应用广泛。一般情况下,工控机和各智能仪表通过RS485总线进行通信。
+关注继续查看

 在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。串口通信方便易行,应用广泛。
一般情况下,工控机和各智能仪表通过RS485总线进行通信。RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点。每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答。
  在Win32下,可以使用两种编程方式实现串口通信,其一是使用ActiveX控件,这种方法程序简单,但欠灵活。其二是调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且自由灵活。本文我们只介绍API串口通信部分。
  串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式)。同步操作时,API函数会阻塞直到操作完成以后才能返回(在多线程方式中,虽然不会阻塞主线程,但是仍然会阻塞监听线程);而重叠操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞。

无论那种操作方式,一般都通过四个步骤来完成:
(1) 打开串口
(2) 配置串口
(3) 读写串口
(4) 关闭串口

(1) 打开串口

  Win32系统把文件的概念进行了扩展。无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的。该函数的原型为:

HANDLE CreateFile( LPCTSTR lpFileName,
                  DWORD dwDesiredAccess,
                  DWORD dwShareMode,
                  LPSECURITY_ATTRIBUTES lpSecurityAttributes,
                  DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile);
  • lpFileName:将要打开的串口逻辑名,如“COM1”;
  • dwDesiredAccess:指定串口访问的类型,可以是读取、写入或二者并列;
  • dwShareMode:指定共享属性,由于串口不能共享,该参数必须置为0;
  • lpSecurityAttributes:引用安全性属性结构,缺省值为NULL;
  • dwCreationDistribution:创建标志,对串口操作该参数必须置为OPEN_EXISTING;
  • dwFlagsAndAttributes:属性描述,用于指定该串口是否进行异步操作,该值为FILE_FLAG_OVERLAPPED,表示使用异步的I/O;该值为0,表示同步I/O操作;
  • hTemplateFile:对串口而言该参数必须置为NULL;

同步I/O方式打开串口的示例代码:

	HANDLE hCom;  //全局变量,串口句柄
	hCom=CreateFile("COM1",//COM1口
		GENERIC_READ|GENERIC_WRITE, //允许读和写
		0, //独占方式
		NULL,
		OPEN_EXISTING, //打开而不是创建
		0, //同步方式
		NULL);
	if(hCom==(HANDLE)-1)
	{
		AfxMessageBox("打开COM失败!");
		return FALSE;
	}
	return TRUE;

重叠I/O打开串口的示例代码:

	HANDLE hCom;  //全局变量,串口句柄
	hCom =CreateFile("COM1",  //COM1口
             GENERIC_READ|GENERIC_WRITE, //允许读和写
             0,  //独占方式
             NULL,
             OPEN_EXISTING,  //打开而不是创建
             FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式
             NULL);
	if(hCom ==INVALID_HANDLE_VALUE)
	{
		AfxMessageBox("打开COM失败!");
		return FALSE;
	}
	   return TRUE;

(2)、配置串口

  在打开通讯设备句柄后,常常需要对串口进行一些初始化配置工作。这需要通过一个DCB结构来进行。DCB结构包含了诸如波特率、数据位数、奇偶校验和停止位数等信息。在查询或配置串口的属性时,都要用DCB结构来作为缓冲区。
  一般用CreateFile打开串口后,可以调用GetCommState函数来获取串口的初始配置。要修改串口的配置,应该先修改DCB结构,然后再调用SetCommState函数设置串口。
  DCB结构包含了串口的各项参数设置,下面仅介绍几个该结构常用的变量:

typedef struct _DCB{
   ………
   //波特率,指定通信设备的传输速率。这个成员可以是实际波特率值或者下面的常量值之一:
   DWORD BaudRate; 
CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400, 
CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400

DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查 
   …
BYTE ByteSize; // 通信字节位数,4—8
BYTE Parity; //指定奇偶校验方法。此成员可以有下列值:
EVENPARITY 偶校验     NOPARITY 无校验
MARKPARITY 标记校验   ODDPARITY 奇校验
BYTE StopBits; //指定停止位的位数。此成员可以有下列值:
ONESTOPBIT 1位停止位   TWOSTOPBITS 2位停止位
ONE5STOPBITS   1.5位停止位
   ………
  } DCB;
winbase.h文件中定义了以上用到的常量。如下:
#define NOPARITY            0
#define ODDPARITY           1
#define EVENPARITY          2
#define ONESTOPBIT          0
#define ONE5STOPBITS        1
#define TWOSTOPBITS         2
#define CBR_110             110
#define CBR_300             300
#define CBR_600             600
#define CBR_1200            1200
#define CBR_2400            2400
#define CBR_4800            4800
#define CBR_9600            9600
#define CBR_14400           14400
#define CBR_19200           19200
#define CBR_38400           38400
#define CBR_56000           56000
#define CBR_57600           57600
#define CBR_115200          115200
#define CBR_128000          128000
#define CBR_256000          256000

GetCommState函数可以获得COM口的设备控制块,从而获得相关参数:

BOOL GetCommState(
   HANDLE hFile, //标识通讯端口的句柄
   LPDCB lpDCB //指向一个设备控制块(DCB结构)的指针
  );
SetCommState函数设置COM口的设备控制块:
BOOL SetCommState(
   HANDLE hFile, 
   LPDCB lpDCB 
  );

  除了在BCD中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串口输入和输出的数据。如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。

BOOL SetupComm(

    HANDLE hFile,	// 通信设备的句柄 
    DWORD dwInQueue,	// 输入缓冲区的大小(字节数) 
    DWORD dwOutQueue	// 输出缓冲区的大小(字节数)
   );

  在用ReadFile和WriteFile读写串行口时,需要考虑超时问题。超时的作用是在指定的时间内没有读入或发送指定数量的字符,ReadFile或WriteFile的操作仍然会结束。
  要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。
  读写串口的超时有两种:间隔超时和总超时。间隔超时是指在接收时两个字符之间的最大时延。总超时是指读写操作总共花费的最大时间。写操作只支持总超时,而读操作两种超时均支持。用COMMTIMEOUTS结构可以规定读写操作的超时。
COMMTIMEOUTS结构的定义为:

typedef struct _COMMTIMEOUTS {   
    DWORD ReadIntervalTimeout; //读间隔超时
    DWORD ReadTotalTimeoutMultiplier; //读时间系数
    DWORD ReadTotalTimeoutConstant; //读时间常量
    DWORD WriteTotalTimeoutMultiplier; // 写时间系数
    DWORD WriteTotalTimeoutConstant; //写时间常量
} COMMTIMEOUTS,*LPCOMMTIMEOUTS;

COMMTIMEOUTS结构的成员都以毫秒为单位。总超时的计算公式是:
总超时=时间系数×要求读/写的字符数+时间常量
例如,要读入10个字符,那么读操作的总超时的计算公式为:
读总超时=ReadTotalTimeoutMultiplier×10+ReadTotalTimeoutConstant
可以看出:间隔超时和总超时的设置是不相关的,这可以方便通信程序灵活地设置各种超时。

如果所有写超时参数均为0,那么就不使用写超时。如果ReadIntervalTimeout为0,那么就不使用读间隔超时。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都为0,则不使用读总超时。如果读间隔超时被设置成MAXDWORD并且读时间系数和读时间常量都为0,那么在读一次输入缓冲区的内容后读操作就立即返回,而不管是否读入了要求的字符。
  在用重叠方式读写串口时,虽然ReadFile和WriteFile在完成操作以前就可能返回,但超时仍然是起作用的。在这种情况下,超时规定的是操作的完成时间,而不是ReadFile和WriteFile的返回时间。
配置串口的示例代码:

	SetupComm(hCom,1024,1024); //输入缓冲区和输出缓冲区的大小都是1024

	COMMTIMEOUTS TimeOuts;
	//设定读超时
	TimeOuts.ReadIntervalTimeout=1000;
	TimeOuts.ReadTotalTimeoutMultiplier=500;
	TimeOuts.ReadTotalTimeoutConstant=5000;
	//设定写超时
	TimeOuts.WriteTotalTimeoutMultiplier=500;
	TimeOuts.WriteTotalTimeoutConstant=2000;
	SetCommTimeouts(hCom,&TimeOuts); //设置超时

	DCB dcb;
	GetCommState(hCom,&dcb);
	dcb.BaudRate=9600; //波特率为9600
	dcb.ByteSize=8; //每个字节有8位
	dcb.Parity=NOPARITY; //无奇偶校验位
	dcb.StopBits=TWOSTOPBITS; //两个停止位
	SetCommState(hCom,&dcb);

	PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);

在读写串口之前,还要用PurgeComm()函数清空缓冲区,该函数原型:

BOOL PurgeComm(

    HANDLE hFile,	//串口句柄
    DWORD dwFlags	// 需要完成的操作
   );	

参数dwFlags指定要完成的操作,可以是下列值的组合:

PURGE_TXABORT	  中断所有写操作并立即返回,即使写操作还没有完成。
PURGE_RXABORT	  中断所有读操作并立即返回,即使读操作还没有完成。
PURGE_TXCLEAR	  清除输出缓冲区
PURGE_RXCLEAR	  清除输入缓冲区

(3)、读写串口

我们使用ReadFile和WriteFile读写串口,下面是两个函数的声明:

BOOL ReadFile(

    HANDLE hFile,	//串口的句柄
    
    // 读入的数据存储的地址,
    // 即读入的数据将存储在以该指针的值为首地址的一片内存区
    LPVOID lpBuffer,	
    DWORD nNumberOfBytesToRead,	// 要读入的数据的字节数
    
    // 指向一个DWORD数值,该数值返回读操作实际读入的字节数
    LPDWORD lpNumberOfBytesRead,	
    
    // 重叠操作时,该参数指向一个OVERLAPPED结构,同步操作时,该参数为NULL。
    LPOVERLAPPED lpOverlapped 	
   );	
BOOL WriteFile(

    HANDLE hFile,	//串口的句柄
    
    // 写入的数据存储的地址,
    // 即以该指针的值为首地址的nNumberOfBytesToWrite
    // 个字节的数据将要写入串口的发送数据缓冲区。
    LPCVOID lpBuffer,	
    
    DWORD nNumberOfBytesToWrite,	//要写入的数据的字节数
    
    // 指向指向一个DWORD数值,该数值返回实际写入的字节数
    LPDWORD lpNumberOfBytesWritten,	
    
    // 重叠操作时,该参数指向一个OVERLAPPED结构,
    // 同步操作时,该参数为NULL。
    LPOVERLAPPED lpOverlapped 	
   );

  在用ReadFile和WriteFile读写串口时,既可以同步执行,也可以重叠执行。在同步执行时,函数直到操作完成后才返回。这意味着同步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,这两个函数也会立即返回,费时的I/O操作在后台进行。
  ReadFile和WriteFile函数是同步还是异步由CreateFile函数决定,如果在调用CreateFile创建句柄时指定了FILE_FLAG_OVERLAPPED标志,那么调用ReadFile和WriteFile对该句柄进行的操作就应该是重叠的;如果未指定重叠标志,则读写操作应该是同步的。ReadFile和WriteFile函数的同步或者异步应该和CreateFile函数相一致。
  ReadFile函数只要在串口输入缓冲区中读入指定数量的字符,就算完成操作。而WriteFile函数不但要把指定数量的字符拷入到输出缓冲区,而且要等这些字符从串行口送出去后才算完成操作。
  如果操作成功,这两个函数都返回TRUE。需要注意的是,当ReadFile和WriteFile返回FALSE时,不一定就是操作失败,线程应该调用GetLastError函数分析返回的结果。例如,在重叠操作时如果操作还未完成函数就返回,那么函数就返回FALSE,而且GetLastError函数返回ERROR_IO_PENDING。这说明重叠操作还未完成。

同步方式读写串口比较简单,下面先例举同步方式读写串口的代码:

//同步读串口
char str[100];
DWORD wCount;//读取的字节数
BOOL bReadStat;
bReadStat=ReadFile(hCom,str,100,&wCount,NULL);
if(!bReadStat)
{
	AfxMessageBox("读串口失败!");
	return FALSE;
}
return TRUE;

//同步写串口

	char lpOutBuffer[100];
	DWORD dwBytesWrite=100;
	COMSTAT ComStat;
	DWORD dwErrorFlags;
	BOOL bWriteStat;
	ClearCommError(hCom,&dwErrorFlags,&ComStat);
	bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);
	if(!bWriteStat)
	{
		AfxMessageBox("写串口失败!");
	}
	PurgeComm(hCom, PURGE_TXABORT|
		PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

在重叠操作时,操作还未完成函数就返回。

  重叠I/O非常灵活,它也可以实现阻塞(例如我们可以设置一定要读取到一个数据才能进行到下一步操作)。有两种方法可以等待操作完成:一种方法是用象WaitForSingleObject这样的等待函数来等待OVERLAPPED结构的hEvent成员;另一种方法是调用GetOverlappedResult函数等待,后面将演示说明。
下面我们先简单说一下OVERLAPPED结构和GetOverlappedResult函数:
OVERLAPPED结构
OVERLAPPED结构包含了重叠I/O的一些信息,定义如下:

typedef struct _OVERLAPPED { // o  
    DWORD  Internal; 
    DWORD  InternalHigh; 
    DWORD  Offset; 
    DWORD  OffsetHigh; 
    HANDLE hEvent; 
} OVERLAPPED;

  在使用ReadFile和WriteFile重叠操作时,线程需要创建OVERLAPPED结构以供这两个函数使用。线程通过OVERLAPPED结构获得当前的操作状态,该结构最重要的成员是hEvent。hEvent是读写事件。当串口使用异步通讯时,函数返回时操作可能还没有完成,程序可以通过检查该事件得知是否读写完毕。
  当调用ReadFile, WriteFile 函数的时候,该成员会自动被置为无信号状态;当重叠操作完成后,该成员变量会自动被置为有信号状态。

GetOverlappedResult函数
BOOL GetOverlappedResult(
    HANDLE hFile,	// 串口的句柄  
    
    // 指向重叠操作开始时指定的OVERLAPPED结构
    LPOVERLAPPED lpOverlapped,	
    
    // 指向一个32位变量,该变量的值返回实际读写操作传输的字节数。
    LPDWORD lpNumberOfBytesTransferred,	
    
    // 该参数用于指定函数是否一直等到重叠操作结束。
    // 如果该参数为TRUE,函数直到操作结束才返回。
    // 如果该参数为FALSE,函数直接返回,这时如果操作没有完成,
    // 通过调用GetLastError()函数会返回ERROR_IO_INCOMPLETE。
    BOOL bWait 	
   );	

该函数返回重叠操作的结果,用来判断异步操作是否完成,它是通过判断OVERLAPPED结构中的hEvent是否被置位来实现的。

异步读串口的示例代码:

char lpInBuffer[1024];
DWORD dwBytesRead=1024;
COMSTAT ComStat;
DWORD dwErrorFlags;
OVERLAPPED m_osRead;
memset(&m_osRead,0,sizeof(OVERLAPPED));
m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

ClearCommError(hCom,&dwErrorFlags,&ComStat);
dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
if(!dwBytesRead)
return FALSE;
BOOL bReadStatus;
bReadStatus=ReadFile(hCom,lpInBuffer,
					 dwBytesRead,&dwBytesRead,&m_osRead);

if(!bReadStatus) //如果ReadFile函数返回FALSE
{
	if(GetLastError()==ERROR_IO_PENDING)
	//GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作	
	{
		WaitForSingleObject(m_osRead.hEvent,2000);
		//使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
		//当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
		PurgeComm(hCom, PURGE_TXABORT|
			PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
		return dwBytesRead;
	}
	return 0;
}
PurgeComm(hCom, PURGE_TXABORT|
		  PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;

  对以上代码再作简要说明:在使用ReadFile 函数进行读操作前,应先使用ClearCommError函数清除错误。ClearCommError函数的原型如下:

BOOL ClearCommError(

    HANDLE hFile,	// 串口句柄
    LPDWORD lpErrors,	// 指向接收错误码的变量
    LPCOMSTAT lpStat	// 指向通讯状态缓冲区
   );	

该函数获得通信错误并报告串口的当前状态,同时,该函数清除串口的错误标志以便继续输入、输出操作。
参数lpStat指向一个COMSTAT结构,该结构返回串口状态信息。 COMSTAT结构 COMSTAT结构包含串口的信息,结构定义如下:

typedef struct _COMSTAT { // cst  
    DWORD fCtsHold : 1;   // Tx waiting for CTS signal 
    DWORD fDsrHold : 1;   // Tx waiting for DSR signal 
    DWORD fRlsdHold : 1;  // Tx waiting for RLSD signal 
    DWORD fXoffHold : 1;  // Tx waiting, XOFF char rec''d 
    DWORD fXoffSent : 1;  // Tx waiting, XOFF char sent 
    DWORD fEof : 1;       // EOF character sent 
    DWORD fTxim : 1;      // character waiting for Tx 
    DWORD fReserved : 25; // reserved 
    DWORD cbInQue;        // bytes in input buffer 
    DWORD cbOutQue;       // bytes in output buffer 
} COMSTAT, *LPCOMSTAT; 

本文只用到了cbInQue成员变量,该成员变量的值代表输入缓冲区的字节数。

  最后用PurgeComm函数清空串口的输入输出缓冲区。

  这段代码用WaitForSingleObject函数来等待OVERLAPPED结构的hEvent成员,下面我们再演示一段调用GetOverlappedResult函数等待的异步读串口示例代码:

char lpInBuffer[1024];
DWORD dwBytesRead=1024;
	BOOL bReadStatus;
	DWORD dwErrorFlags;
	COMSTAT ComStat;
OVERLAPPED m_osRead;

	ClearCommError(hCom,&dwErrorFlags,&ComStat);
	if(!ComStat.cbInQue)
		return 0;
	dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
	bReadStatus=ReadFile(hCom, lpInBuffer,dwBytesRead,
		&dwBytesRead,&m_osRead);
	if(!bReadStatus) //如果ReadFile函数返回FALSE
	{
		if(GetLastError()==ERROR_IO_PENDING)
		{
			GetOverlappedResult(hCom,
				&m_osRead,&dwBytesRead,TRUE);
           // GetOverlappedResult函数的最后一个参数设为TRUE,
           //函数会一直等待,直到读操作完成或由于错误而返回。

			return dwBytesRead;
		}
		return 0;
	}
	return dwBytesRead;

异步写串口的示例代码:

char buffer[1024];
DWORD dwBytesWritten=1024;
	DWORD dwErrorFlags;
	COMSTAT ComStat;
OVERLAPPED m_osWrite;
	BOOL bWriteStat;

	bWriteStat=WriteFile(hCom,buffer,dwBytesWritten,
		&dwBytesWritten,&m_OsWrite);
	if(!bWriteStat)
	{
		if(GetLastError()==ERROR_IO_PENDING)
		{
			WaitForSingleObject(m_osWrite.hEvent,1000);
			return dwBytesWritten;
		}
		return 0;
	}
	return dwBytesWritten;

(4)、关闭串口

  利用API函数关闭串口非常简单,只需使用CreateFile函数返回的句柄作为参数调用CloseHandle即可:

BOOL CloseHandle(
    HANDLE hObject; //handle to object to close 
);

串口编程的一个实例

  为了让您更好地理解串口编程,下面我们分别编写两个例程(见附带的源码部分),这两个例程都实现了工控机与百特显示仪表通过RS485接口进行的串口通信。其中第一个例程采用同步串口操作,第二个例程采用异步串口操作。
  我们只介绍软件部分,RS485接口接线方法不作介绍,感兴趣的读者可以查阅相关资料。

例程1

  打开VC++6.0,新建基于对话框的工程RS485Comm,在主对话框窗口IDD_RS485COMM_DIALOG上添加两个按钮,ID分别为IDC_SEND和IDC_RECEIVE,标题分别为“发送”和“接收”;添加一个静态文本框IDC_DISP,用于显示串口接收到的内容。

在RS485CommDlg.cpp文件中添加全局变量:

HANDLE hCom;  //全局变量,串口句柄

在RS485CommDlg.cpp文件中的OnInitDialog()函数添加如下代码:

	// TODO: Add extra initialization here
	hCom=CreateFile("COM1",//COM1口
		GENERIC_READ|GENERIC_WRITE, //允许读和写
		0, //独占方式
		NULL,
		OPEN_EXISTING, //打开而不是创建
		0, //同步方式
		NULL);
	if(hCom==(HANDLE)-1)
	{
		AfxMessageBox("打开COM失败!");
		return FALSE;
	}

	SetupComm(hCom,100,100); //输入缓冲区和输出缓冲区的大小都是1024

	COMMTIMEOUTS TimeOuts;
	//设定读超时
	TimeOuts.ReadIntervalTimeout=MAXDWORD;
	TimeOuts.ReadTotalTimeoutMultiplier=0;
	TimeOuts.ReadTotalTimeoutConstant=0;
	//在读一次输入缓冲区的内容后读操作就立即返回,
	//而不管是否读入了要求的字符。


	//设定写超时
	TimeOuts.WriteTotalTimeoutMultiplier=100;
	TimeOuts.WriteTotalTimeoutConstant=500;
	SetCommTimeouts(hCom,&TimeOuts); //设置超时

	DCB dcb;
	GetCommState(hCom,&dcb);
	dcb.BaudRate=9600; //波特率为9600
	dcb.ByteSize=8; //每个字节有8位
	dcb.Parity=NOPARITY; //无奇偶校验位
	dcb.StopBits=TWOSTOPBITS; //两个停止位
	SetCommState(hCom,&dcb);

	PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);

分别双击IDC_SEND按钮和IDC_RECEIVE按钮,添加两个按钮的响应函数:

void CRS485CommDlg::OnSend() 
{
	// TODO: Add your control notification handler code here
	// 在此需要简单介绍百特公司XMA5000的通讯协议:
	//该仪表RS485通讯采用主机广播方式通讯。
	//串行半双工,帧11位,1个起始位(0),8个数据位,2个停止位(1)
	//如:读仪表显示的瞬时值,主机发送:DC1 AAA BB ETX
	//其中:DC1是标准ASCII码的一个控制符号,码值为11H(十进制的17)
	//在XMA5000的通讯协议中,DC1表示读瞬时值
	//AAA是从机地址码,也就是XMA5000显示仪表的通讯地址
	//BB为通道号,读瞬时值时该值为01
	//ETX也是标准ASCII码的一个控制符号,码值为03H
	//在XMA5000的通讯协议中,ETX表示主机结束符

	char lpOutBuffer[7];
	memset(lpOutBuffer,''/0'',7); //前7个字节先清零
	lpOutBuffer[0]=''/x11'';  //发送缓冲区的第1个字节为DC1
	lpOutBuffer[1]=''0'';  //第2个字节为字符0(30H)
	lpOutBuffer[2]=''0''; //第3个字节为字符0(30H)
	lpOutBuffer[3]=''1''; // 第4个字节为字符1(31H)
	lpOutBuffer[4]=''0''; //第5个字节为字符0(30H)
	lpOutBuffer[5]=''1''; //第6个字节为字符1(31H)
	lpOutBuffer[6]=''/x03''; //第7个字节为字符ETX
	//从该段代码可以看出,仪表的通讯地址为001	
	DWORD dwBytesWrite=7;
	COMSTAT ComStat;
	DWORD dwErrorFlags;
	BOOL bWriteStat;
	ClearCommError(hCom,&dwErrorFlags,&ComStat);
	bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);
	if(!bWriteStat)
	{
		AfxMessageBox("写串口失败!");
	}

}
void CRS485CommDlg::OnReceive() 
{
	// TODO: Add your control notification handler code here

	char str[100];
	memset(str,''/0'',100);
	DWORD wCount=100;//读取的字节数
	BOOL bReadStat;
	bReadStat=ReadFile(hCom,str,wCount,&wCount,NULL);
	if(!bReadStat)
		AfxMessageBox("读串口失败!");
	PurgeComm(hCom, PURGE_TXABORT|
		PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
	m_disp=str;
	UpdateData(FALSE);
	
}

您可以观察返回的字符串,其中有和仪表显示值相同的部分,您可以进行相应的字符串操作取出仪表的显示值。
打开ClassWizard,为静态文本框IDC_DISP添加CString类型变量m_disp,同时添加WM_CLOSE的相应函数:

void CRS485CommDlg::OnClose() 
{
	// TODO: Add your message handler code here and/or call default
    CloseHandle(hCom);	//程序退出时关闭串口
	CDialog::OnClose();
}

程序的相应部分已经在代码内部作了详细介绍。连接好硬件部分,编译运行程序,细心体会串口同步操作部分。

例程2

  打开VC++6.0,新建基于对话框的工程RS485Comm,在主对话框窗口IDD_RS485COMM_DIALOG上添加两个按钮,ID分别为IDC_SEND和IDC_RECEIVE,标题分别为“发送”和“接收”;添加一个静态文本框IDC_DISP,用于显示串口接收到的内容。在RS485CommDlg.cpp文件中添加全局变量:

HANDLE hCom; //全局变量,

串口句柄在RS485CommDlg.cpp文件中的OnInitDialog()函数添加如下代码:

	hCom=CreateFile("COM1",//COM1口
		GENERIC_READ|GENERIC_WRITE, //允许读和写
		0, //独占方式
		NULL,
		OPEN_EXISTING, //打开而不是创建
		FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式
		NULL);
	if(hCom==(HANDLE)-1)
	{
		AfxMessageBox("打开COM失败!");
		return FALSE;
	}

	SetupComm(hCom,100,100); //输入缓冲区和输出缓冲区的大小都是100

	COMMTIMEOUTS TimeOuts;
	//设定读超时
	TimeOuts.ReadIntervalTimeout=MAXDWORD;
	TimeOuts.ReadTotalTimeoutMultiplier=0;
	TimeOuts.ReadTotalTimeoutConstant=0;
	//在读一次输入缓冲区的内容后读操作就立即返回,
	//而不管是否读入了要求的字符。


	//设定写超时
	TimeOuts.WriteTotalTimeoutMultiplier=100;
	TimeOuts.WriteTotalTimeoutConstant=500;
	SetCommTimeouts(hCom,&TimeOuts); //设置超时

	DCB dcb;
	GetCommState(hCom,&dcb);
	dcb.BaudRate=9600; //波特率为9600
	dcb.ByteSize=8; //每个字节有8位
	dcb.Parity=NOPARITY; //无奇偶校验位
	dcb.StopBits=TWOSTOPBITS; //两个停止位
	SetCommState(hCom,&dcb);

	PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);

分别双击IDC_SEND按钮和IDC_RECEIVE按钮,添加两个按钮的响应函数:

void CRS485CommDlg::OnSend() 
{
	// TODO: Add your control notification handler code here
	OVERLAPPED m_osWrite;
	memset(&m_osWrite,0,sizeof(OVERLAPPED));
	m_osWrite.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);


	char lpOutBuffer[7];
	memset(lpOutBuffer,''/0'',7);
	lpOutBuffer[0]=''/x11'';
	lpOutBuffer[1]=''0'';
	lpOutBuffer[2]=''0'';
	lpOutBuffer[3]=''1'';
	lpOutBuffer[4]=''0'';
	lpOutBuffer[5]=''1'';
	lpOutBuffer[6]=''/x03'';
	
	DWORD dwBytesWrite=7;
	COMSTAT ComStat;
	DWORD dwErrorFlags;
	BOOL bWriteStat;
	ClearCommError(hCom,&dwErrorFlags,&ComStat);
	bWriteStat=WriteFile(hCom,lpOutBuffer,
		dwBytesWrite,& dwBytesWrite,&m_osWrite);

	if(!bWriteStat)
	{
		if(GetLastError()==ERROR_IO_PENDING)
		{
			WaitForSingleObject(m_osWrite.hEvent,1000);
		}
	}

}

void CRS485CommDlg::OnReceive() 
{
	// TODO: Add your control notification handler code here
	OVERLAPPED m_osRead;
	memset(&m_osRead,0,sizeof(OVERLAPPED));
	m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

	COMSTAT ComStat;
	DWORD dwErrorFlags;
	
	char str[100];
	memset(str,''/0'',100);
	DWORD dwBytesRead=100;//读取的字节数
	BOOL bReadStat;

	ClearCommError(hCom,&dwErrorFlags,&ComStat);
	dwBytesRead=min(dwBytesRead, (DWORD)ComStat.cbInQue);
	bReadStat=ReadFile(hCom,str,
		dwBytesRead,&dwBytesRead,&m_osRead);
	if(!bReadStat)
	{
		if(GetLastError()==ERROR_IO_PENDING)
	    //GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作
		{
			WaitForSingleObject(m_osRead.hEvent,2000);
		    //使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
		    //当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
		}
	}

	PurgeComm(hCom, PURGE_TXABORT|
		PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
	m_disp=str;
	UpdateData(FALSE);
}

打开ClassWizard,为静态文本框IDC_DISP添加CString类型变量m_disp,同时添加WM_CLOSE的相应函数:

void CRS485CommDlg::OnClose() 
{
	// TODO: Add your message handler code here and/or call default
    CloseHandle(hCom);	//程序退出时关闭串口
	CDialog::OnClose();
}

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
阿里云服务器怎么设置密码?怎么停机?怎么重启服务器?
如果在创建实例时没有设置密码,或者密码丢失,您可以在控制台上重新设置实例的登录密码。本文仅描述如何在 ECS 管理控制台上修改实例登录密码。
9479 0
积累的VC编程小技巧之属性页
1.属性页的添加: 创建对话框的类,该类要从CpropertyPage继承;然后在要添加该对话框为属性页的类(头文件)里创建CpropertySheet类的一个对象m_tabsheet和新创建的对话框类的对象m_skatch;最后,在.
866 0
阿里云服务器端口号设置
阿里云服务器初级使用者可能面临的问题之一. 使用tomcat或者其他服务器软件设置端口号后,比如 一些不是默认的, mysql的 3306, mssql的1433,有时候打不开网页, 原因是没有在ecs安全组去设置这个端口号. 解决: 点击ecs下网络和安全下的安全组 在弹出的安全组中,如果没有就新建安全组,然后点击配置规则 最后如上图点击添加...或快速创建.   have fun!  将编程看作是一门艺术,而不单单是个技术。
10840 0
积累的VC编程小技巧之标题栏和菜单
1.窗口最大最小化按纽的控制 ①怎样在程序开始的时候让它最大化? ②vc++做出来的exe文件在窗体的右上方是没有最大化和最小化按钮的,怎样实现这一功能? ③如何在显示窗口时,使最大化按钮变灰?   ①在App类里的C…App::InitInstance()中把m_pMainWnd->Sh...
888 0
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,阿里云优惠总结大概有三种登录方式: 登录到ECS云服务器控制台 在ECS云服务器控制台用户可以更改密码、更换系.
13162 0
Eclipse安装图形JFrame,Jswing编程界面
打开eclipse,选择help--->install new software 来源http://www.cnblogs.com/xiaobo-Linux/p/7954274.html 打开网址 http://www.eclipse.org/windowbuilder/ 点击download 在相对应eclipse版本,link右键复制链接,然后复制到这里   然后下一步安装即可。
1421 0
ASP.NET Core 配置 MVC - ASP.NET Core 基础教程 - 简单教程,简单编程
原文:ASP.NET Core 配置 MVC - ASP.NET Core 基础教程 - 简单教程,简单编程 ASP.NET Core 配置 MVC 前面几章节中,我们都是基于 ASP.
1513 0
+关注
andyro1984
本团队有11年以上的解决方案端到端开发经验,涉及的行业有云计算、应用软件(包括WEB)、嵌入式、分布式、大型服务程序(Windows/Linux)、操作系统等。
211
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载