Speex 音频编解码

简介: Speex 音频编解码 2010-08-26 17:14  // demo.cpp : Defines the entry point for the console application.


Speex 音频编解码

 

// demo.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include <speex/speex.h>
#include <stdio.h> 
#include <ostream>

#include <speex/speex_preprocess.h>
#include <speex/speex_echo.h> 
#pragma comment(lib,"libspeexdsp.lib") 
#define FRAME_SIZE 160
int main(int argc, char **argv)
{
	
	char *inFile;
	
	FILE *fin,*fout1,*fout2,*fout3;
	
	short in[FRAME_SIZE];
	short out[FRAME_SIZE];	
	float input[FRAME_SIZE];
	float output[FRAME_SIZE];	
	char cbits[200];
	
	int nbBytes;
	
	/*保存编码的状态*/
	
	void *stateEncode;
	void *stateDecode;
	
	/*保存字节因此他们可以被speex常规读写*/
	
	
	
	SpeexBits bitsEncode;
	SpeexBits bitsDecode;	
	int i, tmp;
	
	//新建一个新的编码状态在窄宽(narrowband)模式下
	
	stateEncode = speex_encoder_init(&speex_nb_mode);
	stateDecode = speex_decoder_init(&speex_nb_mode);
	//设置质量为8(15kbps)
	
	tmp=0;
	speex_encoder_ctl(stateEncode, SPEEX_SET_VBR, &tmp);
	float q=4;
	speex_encoder_ctl(stateEncode, SPEEX_SET_VBR_QUALITY, &q);
	speex_encoder_ctl(stateEncode, SPEEX_SET_QUALITY, &tmp);
	
	inFile = argv[1];
	
	fin = fopen("c:/demo.pcm", "rb");
	fout1 = fopen("c:/demo_speex.raw", "wb");
	fout2 = fopen("c:/demo1.pcm", "wb");
	fout3 = fopen("c:/demo_slience.pcm", "wb");
	//初始化结构使他们保存数据

	speex_bits_init(&bitsEncode);
	speex_bits_init(&bitsDecode);
	int ret;
	int j=0;
	SpeexPreprocessState * m_st;
	SpeexEchoState *echo_state; 
	m_st=speex_preprocess_state_init(160, 8000);
//	echo_state = speex_echo_state_init(160, 8000); 
	int denoise = 1;
	int noiseSuppress = -25;
	speex_preprocess_ctl(m_st, SPEEX_PREPROCESS_SET_DENOISE, &denoise); //降噪
	speex_preprocess_ctl(m_st, SPEEX_PREPROCESS_SET_NOISE_SUPPRESS, &noiseSuppress); //设置噪声的dB

	
	int agc = 1;
	q=24000;
	//actually default is 8000(0,32768),here make it louder for voice is not loudy enough by default. 8000
	speex_preprocess_ctl(m_st, SPEEX_PREPROCESS_SET_AGC, &agc);//增益
	speex_preprocess_ctl(m_st, SPEEX_PREPROCESS_SET_AGC_LEVEL,&q);
	int vad = 1;
	int vadProbStart = 80;
	int vadProbContinue = 65;
	speex_preprocess_ctl(m_st, SPEEX_PREPROCESS_SET_VAD, &vad); //静音检测
	speex_preprocess_ctl(m_st, SPEEX_PREPROCESS_SET_PROB_START , &vadProbStart); //Set probability required for the VAD to go from silence to voice 
	speex_preprocess_ctl(m_st, SPEEX_PREPROCESS_SET_PROB_CONTINUE, &vadProbContinue); //Set probability required for the VAD to stay in the voice state (integer percent) 
	

	while (1)
	{
		memset(out,0,FRAME_SIZE*sizeof(short));
		//读入一帧16bits的声音
		j++;
		int r=fread(in, sizeof(short), FRAME_SIZE, fin);
		
		if (r<FRAME_SIZE)
			break;
		
		//把16bits的值转化为float,以便speex库可以在上面工作
	spx_int16_t * ptr=(spx_int16_t *)in;
	
	if (speex_preprocess_run(m_st, ptr))//预处理 打开了静音检测和降噪
	{
		printf("speech,");
		fwrite(in, sizeof(short), FRAME_SIZE, fout3);
	}
	else
	{
		printf("slience,");
		fwrite(out, sizeof(short), FRAME_SIZE, fout3);
	}
		for (i=0;i<FRAME_SIZE;i++)
			
			input[i]=in[i];
		
		//清空这个结构体里所有的字节,以便我们可以编码一个新的帧
		
		speex_bits_reset(&bitsEncode);
		
		//对帧进行编码
		
		ret=speex_encode(stateEncode, input, &bitsEncode);
		//把bits拷贝到一个利用写出的char型数组
		nbBytes = speex_bits_write(&bitsEncode, cbits, 200);
		fwrite(cbits, sizeof(char), nbBytes, fout1);
		printf("%02d,",nbBytes);
		

		//清空这个结构体里所有的字节,以便我们可以编码一个新的帧
		speex_bits_reset(&bitsDecode);
		//将编码数据如读入bits
		speex_bits_read_from(&bitsDecode, cbits, nbBytes);	
		//对帧进行解码
		ret = speex_decode(stateDecode, &bitsDecode,output);
		for (i=0;i<FRAME_SIZE;i++)
			out[i]=output[i];
		fwrite(out, sizeof(short), FRAME_SIZE, fout2);
	}
	
	//释放编码器状态量
	
	speex_encoder_destroy(stateEncode);
	
	//释放bit_packing结构
	
	speex_bits_destroy(&bitsEncode);
	speex_decoder_destroy(stateDecode);
	
	//释放bit_packing结构
	
	speex_bits_destroy(&bitsDecode);
	fclose(fin);
	fclose(fout1);
	fclose(fout2);
	fclose(fout3);
 return 0;
	
}

更多 0


目录
相关文章
|
编解码 API 语音技术
Opus从入门到精通(七)Opus编码基础之认识声音
前面我们分析完Opus的编解码api使用,封装原理等,接下来我们准备分析Opus编码原理.Opus编码是一个复杂的工作,我们需要做一些基本铺垫,包括认识声音,压缩编码基础.认识音频有助于我们了解音频特征,不仅对语音有助于我们理解编码技术,同时在语音识别,TTS等场景提供帮助
400 0
Opus从入门到精通(七)Opus编码基础之认识声音
|
存储 编解码 安全
Opus从入门到精通(二):编解码器使用
opus_encoder_get_size()返回编码器状态要求的大小。注意,这段代码的未来版本可能改变大小,所以没有assuptions应该对它做出。编码器状态在内存中总是连续,复制它只要一个浅拷贝就足够了。使用opus_encoder_ctl()接口可以改变一些编码器的参数设置。所有这些参数都已有缺省值,所以只在必要的情况下改变它们。
1109 0
|
内存技术
音频格式G711转PCM的代码
音频格式G711转PCM的代码
221 0
|
编解码 内存技术
Opus从入门到精通(四)Opus解码程序实现
由于我们解码后的数据直接写入文件,无法通过vlc等播放器播放,我们通过lame将解码后的数据再编码成mp3,当然,你要乐意也可以直接价格wav头输出成wav. 通过采样率,声道数等创建lame编码器
484 0
|
存储 编解码 API
opus
Opus是一款完全开放的功能广泛的音频编解码器。Opus在互联网上的交互式语音和音乐传输方面无可匹敌,但也适用于存储和流媒体应用程序。它由Internet工程任务组(IETF)标准化为RFC 6716 ,该标准融合了Skype的SILK编解码器和Xiph.Org的CELT编解码器中的技术。
173 0
|
算法 开发者
MPEG 音频 | 学习笔记
快速学习 MPEG 音频,介绍了 MPEG 音频系统机制, 以及在实际应用过程中如何使用。
147 0
MPEG 音频 | 学习笔记
|
编解码 算法 数据格式
iOS音视频开发 - 音频编码格式(pcm、wav、mp3、aac、ogg)
我们通常从音乐App(如:网易云音乐)听歌时,会看到一首歌需要的存储空间大概是10M左右,对于手机磁盘来说这是可以接受的。但在网络中实时在线传播的话,这个数据量可能就太大了,所以必须对其进行压缩编码。
|
内存技术
ffmpeg4音频pcm转aac编码
本文是基于ffmpeg4开发的音频编码器开源,并对其中出现的一些bug与各界同行探讨。
329 0
ffmpeg4音频pcm转aac编码
|
存储 编解码 API
FFmpeg编解码处理4-音频编码
基于 FFmpeg 4.1 版本。
326 0
FFmpeg编解码处理4-音频编码