学习笔记DL005:线性相关、生成子空间,范数,特殊类型矩阵、向量

简介: 线性相关、生成子空间。 逆矩阵A⁽-1⁾存在,Ax=b 每个向量b恰好存在一个解。方程组,向量b某些值,可能不存在解,或者存在无限多个解。x、y是方程组的解,z=αx+(1-α),α取任意实数。 A列向量看作从原点(origin,元素都是零的向量)出发的不同方向,确定有多少种方法到达向量b。

线性相关、生成子空间。

逆矩阵A⁽-1⁾存在,Ax=b 每个向量b恰好存在一个解。方程组,向量b某些值,可能不存在解,或者存在无限多个解。x、y是方程组的解,z=αx+(1-α),α取任意实数。

A列向量看作从原点(origin,元素都是零的向量)出发的不同方向,确定有多少种方法到达向量b。向量x每个元素表示沿着方向走多远。xi表示沿第i个向量方向走多远。Ax=sumixiA:,i。线性组合(linear combination)。一组向量线性组合,每个向量乘以对应标量系数的和。sumiciv⁽i⁾。一组向量的生成子空间(span)是原始向量线性组合后能抵达的点的集合。确定Ax=b是否有解,相当于确定向量b是否在A列向量的生成子空间中。A的列空间(column space)或A的值域(range)。方程Ax=b对任意向量b∈ℝ⁽m⁾都存在解,要求A列空间构成整个ℝ⁽m⁾。ℝ⁽m⁾点不在A列空间,对应b使方程没有解。矩阵A列空间是整个ℝ⁽m⁾的要求,A至少有m列,n>=m。否则,A列空间维数小于m。

列向量冗余为线性相关(linear dependence)。一组向量任意一个向量都不能表示成其他向量的线性组合,线性无关(linearly independent)。某个向量是一组向量中某些向量的线性组合,这个向量加入这组向量不会增加这组向量的生成子空间。一个矩阵列空间涵盖整个ℝ⁽m⁾,矩阵必须包含一组m个线性无关的向量。是Ax=b 对每个向量b取值都有解充分必要条件。向量集只有m个线性无关列向量,不是至少m个。不存在一个m维向量集合有多于m个彼此线性不相关列向量,一个有多于m个列向量矩阵有可能有不止一个大小为m的线性无关向量集。

矩阵可逆,要保证Ax=b 对每个b值至多有一个解。要确保矩阵至多有m个列向量。矩阵必须是一个方阵(square),m=n,且所有列向量线性无关。一个列向量线性相关方阵为奇异的(singular)。矩阵不是方阵或是奇异方阵,方程可能有解,但不能用矩阵逆求解。逆矩阵右乘AA⁽-1⁾=I。左逆、右逆相等。

范数(norm)。

衡量向量大小。L⁽p⁾:||x||p=(sumi|xi|⁽p⁾)⁽1/p⁾。p∈ℝ,p>=1。范数(L⁽p⁾范数),向量映射到非负值函数。向量x范数衡量从原点到点x距离。范数满足性质,f(x)=0=>x=0,f(x+y)<=f(x)+f(y)三解不等式(triangel inequality),∀α∈ℝ f(αx)=|α|f(x)。

p=2,L⁽2⁾范数称欧几里得范数(Euclidean norm)。表示从原点出发到向量x确定点的欧几里得距离。简化||x||,略去下标2。平方L⁽2⁾ 范数衡量向量大小,通过点积x⫟x计算。平方L⁽2⁾范数在数学、计算上比L⁽2⁾范数更方便。平方L⁽2⁾范数对x中每个元素的导数只取决对应元素。L⁽2⁾范数对每个元素的导数和整个向量相关。平方L⁽2⁾范数,在原点附近增长缓慢。

L⁽1⁾范数,在各个位置余率相同,保持简单数学形式。||x||1=sumi|xi|。机器学习问题中零和非零差异重要,用L⁽1⁾范数。当x中某个元素从0增加∊,对应L⁽1⁾范数也增加∊。向量缩放α倍不会改变该向量非零元素数目。L⁽1⁾范数常作为表示非零元素数目替代函数。

L⁽∞⁾范数,最大范数(max norm)。表示向量具有最大幅值元素绝对值,||x||₍∞₎=maxi|xi|。

Frobenius范数(Frobenius norm),衡量矩阵大小。||A||F=sqrt(sumi,jA⁽2⁾₍i,j₎)。

两个向量点积用范数表示,x⫟y=||x||2||y||2cosθ,θ表示x、y间夹角。

特殊类型矩阵、向量。

对角矩阵(diagonal matrix),只在主对角线上有非零元素,其他位置都是零。对角矩阵,当且仅当对于所有i != j,Di,j=0。单位矩阵,对角元素全部是1。

diag(v)表示对角元素由向量v中元素给定一个对角方阵。对角矩阵乘法计算高效。计算乘法diag(v)x,x中每个元素xi放大vi倍。diag(v)x=v⊙x。计算对角方阵的逆矩阵很高效。对角方阵的逆矩阵存在,当且仅当对角元素都是非零值,diag(v)⁽-1⁾=diag([1/v1,…,1/vn]⫟)。根据任意矩阵导出通用机器学习算法。通过将矩阵限制为对象矩阵,得到计算代价较低(简单扼要)算法。

并非所有对角矩阵都是方阵。长方形矩阵也有可能是对角矩阵。非方阵的对象矩阵没有逆矩阵,但有高效计算乘法。长方形对角矩阵D,乘法Dx涉及x每个元素缩放。D是瘦长型矩阵,缩放后末尾添加零。D是胖宽型矩阵,缩放后去掉最后元素。

对称(symmetric)矩阵,转置和自己相等矩阵。A=A⫟。不依赖参数顺序双参数函数生成元素,对称矩阵常出现。A是矩离度量矩阵,Ai,j表示点i到点j距离,Ai,j=Aj,i。距离函数对称。

单位向量(unit vector),具有单位范数(unit norm)向量。||x||2=1。

x⫟y=0,向量x和向量y互相正交(orthogonal)。两个向量都有非零范数,两个向量间夹角90°。ℝⁿ至多有n个范数非零向量互相正交。向量不但互相正交,且范数为1,标准正交(orthonorma)。

正交矩阵(orthogonal matrix),行向量和列向量是分别标准正交方阵。 A⫟A=AA⫟=I,A⁽-1⁾=A⫟。正交矩阵求逆计算代价小。正交矩阵行向量不仅正交,还标准正交。行向量或列向量互相正交但不标准正交矩阵,没有对应专有术语。

参考资料:
《深度学习》

目录
相关文章
|
搜索推荐
|
C++ 容器
C++学习笔记_15 线性容器-vector容器 2021-05-12
C++学习笔记_15 线性容器-vector容器 2021-05-12
学习笔记: 线性代数-向量的定义
线性代数个人学习笔记
189 0
|
存储 编译器 C++
C++学习笔记(十四)——vector的模拟实现(二)
C++学习笔记(十四)——vector的模拟实现
C++学习笔记(十四)——vector的模拟实现(二)
|
存储 编译器 C++
C++学习笔记(十四)——vector的模拟实现(一)
C++学习笔记(十四)——vector的模拟实现
C++学习笔记(十四)——vector的模拟实现(一)
|
算法 C++
C++学习笔记(十五)——vector练习题
C++学习笔记(十五)——vector练习题
C++学习笔记(十五)——vector练习题
|
存储 算法 C++
C++学习笔记(十三)——vector
C++学习笔记(十三)——vector
C++学习笔记(十三)——vector
|
编译器 C++ 索引
C++菜鸟学习笔记系列(8)——标准库类型vector
C++菜鸟学习笔记系列(8)——标准库类型vector
146 0
C++菜鸟学习笔记系列(8)——标准库类型vector
|
机器学习/深度学习 算法 搜索推荐
高维向量检索的设计与实践(一)|学习笔记
快速学习高维向量检索的设计与实践(一)
287 0
高维向量检索的设计与实践(一)|学习笔记
下一篇
DataWorks