利用OpenCV的人脸检测给头像带上圣诞帽

简介: 我们来看下效果 原图:   效果:           原理其实很简单: 采用一张圣诞帽的png图像作为素材,           利用png图像背景是透明的,贴在背景图片上就是戴帽子的效果了。

我们来看下效果

原图:

 

效果:

 

 

 

    原理其实很简单:

采用一张圣诞帽的png图像作为素材,

 

   

    利用png图像背景是透明的,贴在背景图片上就是戴帽子的效果了。

人脸检测的目的主要是为了确定贴帽子的位置,类似ps中自由变换的功能,检测到人脸中间的位置,resize圣诞帽子和人脸大小匹配,确定位置,贴上去,ok!

 

 

 

代码:非常简洁,根据参考博客给出的代码,由OpenCV自带的人脸检测代码经过简单修改即可。

// getheader.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;


#pragma comment(lib,"opencv_core2410d.lib")                
#pragma comment(lib,"opencv_highgui2410d.lib")                
#pragma comment(lib,"opencv_objdetect2410d.lib")   
#pragma comment(lib,"opencv_imgproc2410d.lib")  

/** Function Headers */
void detectAndDisplay( Mat frame );

/** Global variables */
//-- Note, either copy these two files from opencv/data/haarscascades to your current folder, or change these locations
String face_cascade_name = "D:\\Program Files\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
String eyes_cascade_name = "D:\\Program Files\\opencv\\sources\\data\\haarcascades\\haarcascade_eye_tree_eyeglasses.xml";
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
string window_name = "Capture - Face detection";
RNG rng(12345);

const int FRAME_WIDTH = 1280;
const int FRAME_HEIGHT = 240;
/**
* @function main
*/
int main( void )
{
	CvCapture* capture;
	//VideoCapture capture;
	Mat frame;

	//-- 1. Load the cascades
	if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
	if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };

			frame = imread("19.jpg");//背景图片

			//-- 3. Apply the classifier to the frame
			if( !frame.empty() )
			{ detectAndDisplay( frame ); }
			
			waitKey(0);
	
	return 0;
}

void mapToMat(const cv::Mat &srcAlpha, cv::Mat &dest, int x, int y)
{
	int nc = 3;
	int alpha = 0;

	for (int j = 0; j < srcAlpha.rows; j++)
	{
		for (int i = 0; i < srcAlpha.cols*3; i += 3)
		{
			alpha = srcAlpha.ptr<uchar>(j)[i / 3*4 + 3];
			//alpha = 255-alpha;
			if(alpha != 0) //4通道图像的alpha判断
			{
				for (int k = 0; k < 3; k++)
				{
					// if (src1.ptr<uchar>(j)[i / nc*nc + k] != 0)
					if( (j+y < dest.rows) && (j+y>=0) &&
						((i+x*3) / 3*3 + k < dest.cols*3) && ((i+x*3) / 3*3 + k >= 0) &&
						(i/nc*4 + k < srcAlpha.cols*4) && (i/nc*4 + k >=0) )
					{
						dest.ptr<uchar>(j+y)[(i+x*nc) / nc*nc + k] = srcAlpha.ptr<uchar>(j)[(i) / nc*4 + k];
					}
				}
			}
		}
	}
}

/**
* @function detectAndDisplay
*/
void detectAndDisplay( Mat frame )
{
	std::vector<Rect> faces;
	Mat frame_gray;
	Mat hatAlpha;

	hatAlpha = imread("2.png",-1);//圣诞帽的图片

	cvtColor( frame, frame_gray, COLOR_BGR2GRAY );
	equalizeHist( frame_gray, frame_gray );
	//-- Detect faces
	face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );

	for( size_t i = 0; i < faces.size(); i++ )
	{

		Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 );
		// ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2), 0, 0, 360, Scalar( 255, 0, 255 ), 2, 8, 0 );

		// line(frame,Point(faces[i].x,faces[i].y),center,Scalar(255,0,0),5);

		Mat faceROI = frame_gray( faces[i] );
		std::vector<Rect> eyes;

		//-- In each face, detect eyes
		eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) );

		for( size_t j = 0; j < eyes.size(); j++ )
		{
			Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 );
			int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
			// circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 3, 8, 0 );
		}

		// if(eyes.size())
		{
			resize(hatAlpha,hatAlpha,Size(faces[i].width, faces[i].height),0,0,INTER_LANCZOS4);
			// mapToMat(hatAlpha,frame,center.x+2.5*faces[i].width,center.y-1.3*faces[i].height);
			mapToMat(hatAlpha,frame,faces[i].x,faces[i].y-0.8*faces[i].height);
		}
	}
	//-- Show what you got
	imshow( window_name, frame );
	imwrite("merry christmas.jpg",frame);
}


 

 


下面是摄像头实时戴帽子,改下主函数就好了:

 

int main( void )
{
	CvCapture* capture;
	//VideoCapture capture;
	Mat frame;

	//-- 1. Load the cascades
	if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
	if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };

		//	frame = imread("19.jpg");//背景图片


			VideoCapture cap(0); //打开默认的摄像头号
			if(!cap.isOpened())  //检测是否打开成功
				return -1;

			Mat edges;
			//namedWindow("edges",1);
			for(;;)
			{
				Mat frame;
				cap >> frame; // 从摄像头中获取新的一帧
				detectAndDisplay( frame );
				//imshow("edges", frame);
				if(waitKey(30) >= 0) break;
			}
			//摄像头会在VideoCapture的析构函数中释放
			waitKey(0);
	
	return 0;
}

 

我的系统的是win10 64位的系统,之前摄像头出来都是黑的,发现需要用vs2010配置一下x64版本方可使用,查了半天还是自己之前写的博客靠谱:

就是按照win7 x64来配置,完美运行

 http://blog.csdn.net/wangyaninglm/article/details/16325283

 效果:


参考文献:

http://blog.csdn.net/lonelyrains/article/details/50388999

http://docs.opencv.org/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html


我调试好的工程:

点击打开链接


相关文章
|
6月前
|
算法 IDE 开发工具
OpenCV常用的 7 个示例:从读取到人脸检测(Python版)
OpenCV常用的 7 个示例:从读取到人脸检测(Python版)
|
计算机视觉 C++ Python
OpenCV人脸检测打卡系统
OpenCV人脸检测打卡系统
97 0
|
5月前
|
机器学习/深度学习 Java 开发工具
【移花接木】OpenCV4.8 For Java 深度学习 实时人脸检测
【移花接木】OpenCV4.8 For Java 深度学习 实时人脸检测
105 0
|
6月前
|
XML 算法 计算机视觉
使用OpenCV进行人脸检测和戴墨镜特效实战(附Python源码)
使用OpenCV进行人脸检测和戴墨镜特效实战(附Python源码)
312 1
|
5月前
|
监控 安全 计算机视觉
实战 | 18行代码轻松实现人脸实时检测【附完整代码与源码详解】Opencv、人脸检测
实战 | 18行代码轻松实现人脸实时检测【附完整代码与源码详解】Opencv、人脸检测
|
5月前
|
机器学习/深度学习 算法 数据可视化
基于OpenCV的人脸检测软件(含Python源码+UI界面+图文详解)
基于OpenCV的人脸检测软件(含Python源码+UI界面+图文详解)
|
6月前
|
前端开发 Java Maven
java集成opencv(不踩坑),实现人脸检测小demo(含上传人像图片识别接口),windows,IDEA,Springboot
java集成opencv(不踩坑),实现人脸检测小demo(含上传人像图片识别接口),windows,IDEA,Springboot
1072 0
|
11月前
|
编解码 计算机视觉 Ruby
Python图像处理(二)opencv人脸检测
人脸检测部分,我们需要使用到opencv,看清楚,是opencv,不是opencv_python 首先,我们打开opencv的官网:opencv.org/# 当然,纯英文的。 我们找到library目录下的release目录: 选择你需要的版本,下载对应的平台就好。如下图所示,我当然要尝试最新版的了。 下载完成之后,双击安装就可以了。 我理解的人脸检测呢,其实就是opencv根据采集到的图像与其库中预置的人脸特征去比对,有符合人脸特征的,就说明采集到的图像是有人脸的。初学,我也不清楚我说的是否正确。 有不对的地方,欢迎大佬指出。
74 0
|
文字识别 算法 IDE
OpenCV常用的 7 个示例:从读取到人脸检测(Python版)
OpenCV常用的 7 个示例:从读取到人脸检测(Python版)
|
机器学习/深度学习 人工智能 算法
LabVIEW快速实现OpenCV DNN(YunNet)的人脸检测(含源码)
LabVIEW快速实现OpenCV DNN(YunNet)的人脸检测
595 0
LabVIEW快速实现OpenCV DNN(YunNet)的人脸检测(含源码)
下一篇
无影云桌面