java对象拷贝

简介: java赋值是复制对象引用,如果我们想要得到一个对象的副本,使用赋值操作是无法达到目的的:@Testpublic void testassign(){ Person p1=new Person(); p1.

java赋值是复制对象引用,如果我们想要得到一个对象的副本,使用赋值操作是无法达到目的的:

@Test
public void testassign(){
  Person p1=new Person();
  p1.setAge(31);
  p1.setName("Peter");

  Person p2=p1;
  System.out.println(p1==p2);//true
}

如果创建一个对象的新的副本,也就是说他们的初始状态完全一样,但以后可以改变各自的状态,而互不影响,就需要用到java中对象的复制,如原生的clone()方法。

如何进行对象克隆

Object对象有个clone()方法,实现了对象中各个属性的复制,但它的可见范围是protected的,所以实体类使用克隆的前提是:

① 实现Cloneable接口,这是一个标记接口,自身没有方法。
② 覆盖clone()方法,可见性提升为public。

@Data
public class Person implements Cloneable {
    private String name;
    private Integer age;
    private Address address;
    @Override
    protected Object clone() throws CloneNotSupportedException {
        return super.clone();
    }
}

@Test
public void testShallowCopy() throws Exception{
  Person p1=new Person();
  p1.setAge(31);
  p1.setName("Peter");

  Person p2=(Person) p1.clone();
  System.out.println(p1==p2);//false
  p2.setName("Jacky");
  System.out.println("p1="+p1);//p1=Person [name=Peter, age=31]
  System.out.println("p2="+p2);//p2=Person [name=Jacky, age=31]
}

该测试用例只有两个基本类型的成员,测试达到目的了。

事情貌似没有这么简单,为Person增加一个Address类的成员:

@Data
public class Address {
    private String type;
    private String value;
}

再来测试,问题来了。

@Test
public void testShallowCopy() throws Exception{
  Address address=new Address();
  address.setType("Home");
  address.setValue("北京");

  Person p1=new Person();
  p1.setAge(31);
  p1.setName("Peter");
  p1.setAddress(address);

  Person p2=(Person) p1.clone();
  System.out.println(p1==p2);//false

  p2.getAddress().setType("Office");
  System.out.println("p1="+p1);
  System.out.println("p2="+p2);
}

查看输出:

false
p1=Person(name=Peter, age=31, address=Address(type=Office, value=北京))
p2=Person(name=Peter, age=31, address=Address(type=Office, value=北京))

遇到了点麻烦,只修改了p2的地址类型,两个地址类型都变成了Office。

浅拷贝和深拷贝

前面实例中是浅拷贝和深拷贝的典型用例。

浅拷贝:被复制对象的所有值属性都含有与原来对象的相同,而所有的对象引用属性仍然指向原来的对象。

深拷贝:在浅拷贝的基础上,所有引用其他对象的变量也进行了clone,并指向被复制过的新对象。

也就是说,一个默认的clone()方法实现机制,仍然是赋值。

如果一个被复制的属性都是基本类型,那么只需要实现当前类的cloneable机制就可以了,此为浅拷贝。

如果被复制对象的属性包含其他实体类对象引用,那么这些实体类对象都需要实现cloneable接口并覆盖clone()方法。

@Data
public class Address implements Cloneable {
    private String type;
    private String value;

    @Override
    protected Object clone() throws CloneNotSupportedException {
        return super.clone();
    }
}

这样还不够,Person的clone()需要显式地clone其引用成员。

@Data
public class Person implements Cloneable {
    private String name;
    private Integer age;
    private Address address;
    @Override
    protected Object clone() throws CloneNotSupportedException {
        Object obj=super.clone();
        Address a=((Person)obj).getAddress();
        ((Person)obj).setAddress((Address) a.clone());
        return obj;
    }
}

重新跑前面的测试用例:

false
p1=Person(name=Peter, age=31, address=Address(type=Home, value=北京))
p2=Person(name=Peter, age=31, address=Address(type=Office, value=北京))

clone方式深拷贝小结

① 如果有一个非原生成员,如自定义对象的成员,那么就需要:

  • 该成员实现Cloneable接口并覆盖clone()方法,不要忘记提升为public可见。
  • 同时,修改被复制类的clone()方法,增加成员的克隆逻辑。

② 如果被复制对象不是直接继承Object,中间还有其它继承层次,每一层super类都需要实现Cloneable接口并覆盖clone()方法。

与对象成员不同,继承关系中的clone不需要被复制类的clone()做多余的工作。

一句话来说,如果实现完整的深拷贝,需要被复制对象的继承链、引用链上的每一个对象都实现克隆机制。

前面的实例还可以接受,如果有N个对象成员,有M层继承关系,就会很麻烦。

利用序列化实现深拷贝

clone机制不是强类型的限制,比如实现了Cloneable并没有强制继承链上的对象也实现;也没有强制要求覆盖clone()方法。因此编码过程中比较容易忽略其中一个环节,对于复杂的项目排查就是困难了。

要寻找可靠的,简单的方法,序列化就是一种途径。

  • 被复制对象的继承链、引用链上的每一个对象都实现java.io.Serializable接口。这个比较简单,不需要实现任何方法,serialVersionID的要求不强制,对深拷贝来说没毛病。

  • 实现自己的deepClone方法,将this写入流,再读出来。俗称:冷冻-解冻。

@Data
public class Person implements Serializable {
    private String name;
    private Integer age;
    private Address address;
    public Person deepClone() {
        Person p2=null;
        Person p1=this;
        PipedOutputStream out=new PipedOutputStream();
        PipedInputStream in=new PipedInputStream();
        try {
            in.connect(out);
        } catch (IOException e) {
            e.printStackTrace();
        }

        try(ObjectOutputStream bo=new ObjectOutputStream(out);
                ObjectInputStream bi=new ObjectInputStream(in);) {
            bo.writeObject(p1);
            p2=(Person) bi.readObject();

        } catch (Exception e) {
            e.printStackTrace();
        }
        return p2;
    }
}

原型工厂类

为了便于测试,也节省篇幅,封装一个工厂类。

公平起见,避免某些工具库使用缓存机制,使用原型方式工厂。

public class PersonFactory{
    public static Person newPrototypeInstance(){
        Address address = new Address();
        address.setType("Home");
        address.setValue("北京");

        Person p1 = new Person();
        p1.setAddress(address);
        p1.setAge(31);
        p1.setName("Peter");
        return p1;
    }
}

利用Dozer拷贝对象

Dozer是一个Bean处理类库。

maven依赖

<dependency>
  <groupId>net.sf.dozer</groupId>
  <artifactId>dozer</artifactId>
  <version>5.5.1</version>
</dependency>

测试用例:

@Data
public class Person {
    private String name;
    private Integer age;
    private Address address;

    @Test
    public void testDozer() {
    Person p1=PersonFactory.newPrototypeInstance();
        Mapper mapper = new DozerBeanMapper();
        Person p2 = mapper.map(p1, Person.class);
        p2.getAddress().setType("Office");
        System.out.println("p1=" + p1);
        System.out.println("p2=" + p2);
    }
}

@Data
public class Address {
    private String type;
    private String value;
}

输出:

p1=Person(name=Peter, age=31, address=Address(type=Home, value=北京))
p2=Person(name=Peter, age=31, address=Address(type=Office, value=北京))

注意:在万次测试中dozer有一个很严重的问题,如果DozerBeanMapper对象在for循环中创建,效率(dozer:7358)降低近10倍。由于DozerBeanMapper是线程安全的,所以不应该每次都创建新的实例。可以自带的单例工厂DozerBeanMapperSingletonWrapper来创建mapper,或集成到spring中。

还有更暴力的,创建一个People类:

@Data
public class People {
    private String name;
    private String age;//这里已经不是Integer了
    private Address address;

    @Test
    public void testDozer() {
    Person p1=PersonFactory.newPrototypeInstance();
        Mapper mapper = new DozerBeanMapper();
        People p2 = mapper.map(p1, People.class);
        p2.getAddress().setType("Office");
        System.out.println("p1=" + p1);
        System.out.println("p2=" + p2);
    }
}

只要属性名相同,干~

继续蹂躏:

@Data
public class People {
    private String name;
    private String age;
    private Map<String,String> address;//��

    @Test
    public void testDozer() {
    Person p1=PersonFactory.newPrototypeInstance();
        Mapper mapper = new DozerBeanMapper();
        People p2 = mapper.map(p1, People.class);
        p2.getAddress().put("type", "Office");
        System.out.println("p1=" + p1);
        System.out.println("p2=" + p2);
    }
}

利用Commons-BeanUtils复制对象

maven依赖

<dependency>
  <groupId>commons-beanutils</groupId>
  <artifactId>commons-beanutils</artifactId>
  <version>1.9.3</version>
</dependency>

测试用例:

@Data
public class Person {
    private String name;
    private String age;
    private Address address;

    @Test
    public void testCommonsBeanUtils(){
    Person p1=PersonFactory.newPrototypeInstance();
        try {
            Person p2=(Person) BeanUtils.cloneBean(p1);
            System.out.println("p1=" + p1);
            p2.getAddress().setType("Office");
            System.out.println("p2=" + p2);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

利用cglib复制对象

maven依赖:

<dependency>
  <groupId>cglib</groupId>
  <artifactId>cglib</artifactId>
  <version>3.2.4</version>
</dependency>

测试用例:

@Test
public void testCglib(){
  Person p1=PersonFactory.newPrototypeInstance();
  BeanCopier beanCopier=BeanCopier.create(Person.class, Person.class, false);
  Person p2=new Person();
  beanCopier.copy(p1, p2,null);
  p2.getAddress().setType("Office");
  System.out.println("p1=" + p1);
  System.out.println("p2=" + p2);
}

结果大跌眼镜,cglib这么牛x,居然是浅拷贝。不过cglib提供了扩展能力:

@Test
public void testCglib(){
  Person p1=PersonFactory.newPrototypeInstance();
  BeanCopier beanCopier=BeanCopier.create(Person.class, Person.class, true);
  Person p2=new Person();
  beanCopier.copy(p1, p2, new Converter(){
    @Override
    public Object convert(Object value, Class target, Object context) {
      if(target.isSynthetic()){
        BeanCopier.create(target, target, true).copy(value, value, this);
      }
      return value;
    }
  });
  p2.getAddress().setType("Office");
  System.out.println("p1=" + p1);
  System.out.println("p2=" + p2);
}

Orika复制对象

orika的作用不仅仅在于处理bean拷贝,更擅长各种类型之间的转换。

maven依赖:

<dependency>
  <groupId>ma.glasnost.orika</groupId>
  <artifactId>orika-core</artifactId>
  <version>1.5.0</version>
</dependency>
</dependencies>

测试用例:

@Test
public void testOrika() {
  MapperFactory mapperFactory = new DefaultMapperFactory.Builder().build();

  mapperFactory.classMap(Person.class, Person.class)
  .byDefault()
  .register();
  ConverterFactory converterFactory = mapperFactory.getConverterFactory();
  MapperFacade mapper = mapperFactory.getMapperFacade();

  Person p1=PersonFactory.newPrototypeInstance();
  Person p2 = mapper.map(p1, Person.class);
  System.out.println("p1=" + p1);
  p2.getAddress().setType("Office");
  System.out.println("p2=" + p2);
}

Spring BeanUtils复制对象

给Spring个面子,貌似它不支持深拷贝。

Person p1=PersonFactory.newPrototypeInstance();
Person p2 = new Person();
Person p2 = (Person) BeanUtils.cloneBean(p1);
//BeanUtils.copyProperties(p2, p1);//这个更没戏

深拷贝性能对比

@Test
public void testBatchDozer(){
  Long start=System.currentTimeMillis();
  Mapper mapper = new DozerBeanMapper();
  for(int i=0;i<10000;i++){
    Person p1=PersonFactory.newPrototypeInstance();
    Person p2 = mapper.map(p1, Person.class);
  }
  System.out.println("dozer:"+(System.currentTimeMillis()-start));
  //dozer:721
}
@Test
public void testBatchBeanUtils(){
  Long start=System.currentTimeMillis();
  for(int i=0;i<10000;i++){
    Person p1=PersonFactory.newPrototypeInstance();
    try {
      Person p2=(Person) BeanUtils.cloneBean(p1);
    } catch (Exception e) {
      e.printStackTrace();
    }
  }
  System.out.println("commons-beanutils:"+(System.currentTimeMillis()-start));
  //commons-beanutils:229
}
@Test
public void testBatchCglib(){
  Long start=System.currentTimeMillis();
  for(int i=0;i<10000;i++){
    Person p1=PersonFactory.newPrototypeInstance();
    BeanCopier beanCopier=BeanCopier.create(Person.class, Person.class, true);
    Person p2=new Person();
    beanCopier.copy(p1, p2, new Converter(){
      @Override
      public Object convert(Object value, Class target, Object context) {
        if(target.isSynthetic()){
          BeanCopier.create(target, target, true).copy(value, value, this);
        }
        return value;
      }
    });
  }
  System.out.println("cglib:"+(System.currentTimeMillis()-start));
  //cglib:133
}
@Test
public void testBatchSerial(){
  Long start=System.currentTimeMillis();
  for(int i=0;i<10000;i++){
    Person p1=PersonFactory.newPrototypeInstance();
    Person p2=p1.deepClone();
  }
  System.out.println("serializable:"+(System.currentTimeMillis()-start));
  //serializable:687
}
@Test
public void testBatchOrika() {
  MapperFactory mapperFactory = new DefaultMapperFactory.Builder().build();

  mapperFactory.classMap(Person.class, Person.class)
  .field("name", "name")
  .byDefault()
  .register();
  ConverterFactory converterFactory = mapperFactory.getConverterFactory();
  MapperFacade mapper = mapperFactory.getMapperFacade();

  Long start=System.currentTimeMillis();
  for(int i=0;i<10000;i++){
    Person p1=PersonFactory.newPrototypeInstance();
    Person p2 = mapper.map(p1, Person.class);
  }
  System.out.println("orika:"+(System.currentTimeMillis()-start));
  //orika:83
}

@Test
public void testBatchClone(){
  Long start=System.currentTimeMillis();
  for(int i=0;i<10000;i++){
    Person p1=PersonFactory.newPrototypeInstance();
    try {
      Person p2=(Person) p1.clone();
    } catch (CloneNotSupportedException e) {
      e.printStackTrace();
    }
  }
  System.out.println("clone:"+(System.currentTimeMillis()-start));
  //clone:8
}

(10k)性能比较:

//dozer:721
//commons-beanutils:229
//cglib:133
//serializable:687
//orika:83
//clone:8

深拷贝总结

原生的clone效率无疑是最高的,用脚趾头都能想到。

偶尔用一次,用哪个都问题都不大。

一般性能要求稍高的应用场景,cglib和orika完全可以接受。

另外一个考虑的因素,如果项目已经引入了某个依赖,就用那个依赖来做吧,没必要再引入一个第三方依赖。

目录
相关文章
|
1月前
|
安全 Java 编译器
Java对象一定分配在堆上吗?
本文探讨了Java对象的内存分配问题,重点介绍了JVM的逃逸分析技术及其优化策略。逃逸分析能判断对象是否会在作用域外被访问,从而决定对象是否需要分配到堆上。文章详细讲解了栈上分配、标量替换和同步消除三种优化策略,并通过示例代码说明了这些技术的应用场景。
Java对象一定分配在堆上吗?
|
2月前
|
Java API
Java 对象释放与 finalize 方法
关于 Java 对象释放的疑惑解答,以及 finalize 方法的相关知识。
54 17
|
1月前
|
消息中间件 缓存 Java
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
零拷贝技术 Zero-Copy 是指计算机执行操作时,可以直接从源(如文件或网络套接字)将数据传输到目标缓冲区, 而不需要 CPU 先将数据从某处内存复制到另一个特定区域,从而减少上下文切换以及 CPU 的拷贝时间。
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
|
1月前
|
存储 安全 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第22天】在Java的世界里,对象序列化和反序列化是数据持久化和网络传输的关键技术。本文将带你了解如何在Java中实现对象的序列化与反序列化,并探讨其背后的原理。通过实际代码示例,我们将一步步展示如何将复杂数据结构转换为字节流,以及如何将这些字节流还原为Java对象。文章还将讨论在使用序列化时应注意的安全性问题,以确保你的应用程序既高效又安全。
|
2月前
|
存储 Java 数据管理
Java零基础-Java对象详解
【10月更文挑战第7天】Java零基础教学篇,手把手实践教学!
35 6
|
2月前
|
Oracle Java 关系型数据库
重新定义 Java 对象相等性
本文探讨了Java中的对象相等性问题,包括自反性、对称性、传递性和一致性等原则,并通过LaptopCharger类的例子展示了引用相等与内容相等的区别。文章还介绍了如何通过重写`equals`方法和使用`Comparator`接口来实现更复杂的相等度量,以满足特定的业务需求。
31 3
|
2月前
|
存储 Java
Java编程中的对象序列化与反序列化
【10月更文挑战第9天】在Java的世界里,对象序列化是连接数据持久化与网络通信的桥梁。本文将深入探讨Java对象序列化的机制、实践方法及反序列化过程,通过代码示例揭示其背后的原理。从基础概念到高级应用,我们将一步步揭开序列化技术的神秘面纱,让读者能够掌握这一强大工具,以应对数据存储和传输的挑战。
|
2月前
|
XML Java Maven
在 Cucumber 测试中自动将 Cucumber 数据表映射到 Java 对象
在 Cucumber 测试中自动将 Cucumber 数据表映射到 Java 对象
69 7
|
2月前
|
存储 Java 数据管理
Java零基础-Java对象详解
【10月更文挑战第3天】Java零基础教学篇,手把手实践教学!
32 1
|
2月前
|
Java 数据安全/隐私保护
java类和对象
java类和对象
26 5