c语言中float、double、long double在内存中存储方式

简介: 存储格式中的二机制转为浮点数:     浮点型变量在计算机内存中占用4个字节(4 Byte),即32-bit,一个浮点数由2部分组成:底数m  和 指数e;   底数部分:使用2进制数来表示此浮点数的实际值;   指数部分:占用8=bit空间来表示,表示数值范围:0-255;后面介绍 用于存储...

存储格式中的二机制转为浮点数:

    浮点型变量在计算机内存中占用4个字节(4 Byte),即32-bit,一个浮点数由2部分组成:底数m  和 指数e;

  底数部分:使用2进制数来表示此浮点数的实际值;

  指数部分:占用8=bit空间来表示,表示数值范围:0-255;后面介绍 用于存储科学计数法中的指数部分,并且采用移位存储方式;

具体分析:

  浮点数据就是按下表的格式存储在4个字节中:

  Address+0 Address+1 Address+2 Address+3 Contents

  SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
      S部分: 表示浮点数正负,1为负数,0为正数。一位即可

  E部分:指数加上127后的值的二进制数(why是加上了127之后的值? 由于指数应可正可负,所以IEEE规定,此处算出的次方须减去127才是真正的指数。所以float的指数可从 -126到128.)

  M部分:24-bit的底数(底数部分实际是占用24-bit的一个值,由于其最高位始终为 1 ,所以最高位省去不存储,在存储中只有23-bit。)

  特例:浮点数 为0时,指数和底数都为0,但此前的公式不成立。因为2的0次方为1,所以,0是个特例。这个特例也不用认为去干扰,编译器会自动去识别。

 举例:看下-12.5在计算机中存储的具体数据:0xC1 0x48 0x00 0x00

  二进制:11000001 01001000 00000000 00000000

   格式:SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM

  可见:

    S: 为1,是个负数。

    E:(8-bit)为 10000010 转为10进制为130,130-127=3,即实际指数部分为3.

    M:(23-bit)为 10010000000000000000000。底数实际上是:1.10010000000000000000000

  现在,我们通过指数部分E的值来调整底数部分M的值。

    调整方法为:如果指数E为负数,底数的小数点向左移,如果指数E为正数,底数的小数点向右移。小数点移动的位数由指数E的绝对值决定。

    这里,E为正3,使用向右移3为即得: 1100.10000000000000000000

  转换过程:小数点左边的1100 表示为 (1 × 2^3) + (1 × 2^2) + (0 × 2^1) + (0 × 2^0), 其结果为 12 。

        小数点右边的 .100… 表示为 (1 × 2^-1) + (0 × 2^-2) + (0 × 2^-3) + ... ,其结果为.5 。

   以上二值的和为12.5, 由于S 为1,使用为负数,即-12.5 。所以,16进制 0XC1480000 是浮点数 -12.5 。

浮点数转存储格式的二进制数:

  下面看下如何将一浮点数装换成计算机存储格式中的二进制数。 举例将17.625换算成 float型。

  1、转为二进制:10001.101

  2、小数点,左移4位,变成1.0001101

  3、这样底数为:1.0001101, 指数为:4+127=131,二进制位:1000011

  4、符号位为0,因为是正数;

  5、合并:0 1000011  0001101后面补0,补成32-bit;

  6、转成16进制:转换成16进制:0x41 8D 00 00 

浮点数转成二进制代码形式代码:

 1 #include<iostream>
 2 using namespace std;
 3 
 4 #define uchar unsigned char
 5 
 6 void binary_print(uchar c)
 7 {
 8         for(int i = 0; i < 8; ++i)
 9         {
10                 if((c << i) & 0x80)
11                         cout << '1';
12                 else cout << '0';
13         }
14         cout << ' ';
15 }
16 
17 int main()
18 {
19         float a;
20         uchar c_save[4];
21         uchar i;
22         void *f;
23         f = &a;
24 
25         cout<<"pls input a float num:";
26         for(i=4;i!=0;i--)
27                 binary_print(c_save[i-1]);
28         cout<<endl;
29 
30         return 0;
31 }

  C标准规定,float类型必须至少能表示6位有效数字,就像33.333 333这样的数字的小数点后的前6位;那么whyfloat能表示6位有效数字呢?

   解释如下:十进制中的9,在二进制中的表示形式是1001,这也就是说: 表示十进制中的一位数在二进制中需要4bit,所以我们现在float中具有24bit的精度,所以float在十进制中具有24/4=6,所以在十进制里,float能够精确到小数点后6位;

  double呢?其实和float原理是一样的,只是double的位数更长一些而已;

        

   注意点,double类型数据操作比float型运算要慢很多;

浮点值的上溢和下溢

  假设系统中最大的float值为34E38,并进行如下操作:

    float toobig = 3.4E38 * 100.0f ;

           printf("%e\n", toobig);

  会发生什么呢?这是一个上溢(overflow)的例子。当计算结果是一个大得不能表达的数时,会发生上溢。

   相对应的,当表示一个float能表示的最小数时,对这个数进行除2操作,将会发生下溢。

 

相关文章
|
1月前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
60 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
1月前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
75 6
|
2月前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
78 6
|
2月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
228 13
|
2月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
95 11
|
2月前
|
大数据 C语言
C 语言动态内存分配 —— 灵活掌控内存资源
C语言动态内存分配使程序在运行时灵活管理内存资源,通过malloc、calloc、realloc和free等函数实现内存的申请与释放,提高内存使用效率,适应不同应用场景需求。
|
2月前
|
存储 C语言 开发者
C 语言指针与内存管理
C语言中的指针与内存管理是编程的核心概念。指针用于存储变量的内存地址,实现数据的间接访问和操作;内存管理涉及动态分配(如malloc、free函数)和释放内存,确保程序高效运行并避免内存泄漏。掌握这两者对于编写高质量的C语言程序至关重要。
79 11
|
2月前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
84 1
|
2月前
|
存储 C语言 计算机视觉
在C语言中指针数组和数组指针在动态内存分配中的应用
在C语言中,指针数组和数组指针均可用于动态内存分配。指针数组是数组的每个元素都是指针,可用于指向多个动态分配的内存块;数组指针则指向一个数组,可动态分配和管理大型数据结构。两者结合使用,灵活高效地管理内存。

热门文章

最新文章