解决Oracle ORA-00984: column not allowed here

简介: 某列是字符列,结果忘记加单引号了   INSERT INTO prt_document_present     (company_code, doc_no, seq_no, field_name, desc_msg, width, align, is_numeric, deci_len...

某列是字符列,结果忘记加单引号了


  INSERT INTO prt_document_present

    (company_code, doc_no, seq_no, field_name, desc_msg, width, align, is_numeric, deci_length,

     is_group, has_data, row_span, col_span, need_sum, color_r, color_g, color_b, is_group_field,

     is_func_field)

  VALUES

    ('00',  'prt_demo2', 40, 'ip as ip2', 'ip 2', 10, 'C', 'N',  0, 'N', 'Y',  1, 1, 'N', 0, 0, 0, 'N', N)


如上SQL,这其实是最简单的问题,可惜眼力劲不够好,我没有看到最后面的那个N忘记加单引号,加了单引号就ok了

目录
相关文章
|
编解码 人工智能
蚂蚁百灵大模型推出20亿参数遥感模型SkySense
【2月更文挑战第13天】蚂蚁百灵大模型推出20亿参数遥感模型SkySense
640 1
蚂蚁百灵大模型推出20亿参数遥感模型SkySense
|
网络安全
如何在 Debian 系统上配置 NTP,来确保计算机时间的准确同步
如何在 Debian 系统上配置 NTP,来确保计算机时间的准确同步
4053 0
如何在 Debian 系统上配置 NTP,来确保计算机时间的准确同步
|
机器学习/深度学习 并行计算 Shell
docker 获取Nvidia 镜像 | cuda |cudnn
本文分享如何使用docker获取Nvidia 镜像,包括cuda10、cuda11等不同版本,cudnn7、cudnn8等,快速搭建深度学习环境。
6939 0
|
编解码 自然语言处理
重磅!阿里巴巴开源最大参数规模大模型——高达720亿参数规模的Qwen-72B发布!还有一个的18亿参数的Qwen-1.8B
阿里巴巴开源了720亿参数规模的Qwen-72B大语言模型,是目前国内最大参数规模的开源模型。该模型在3万亿tokens数据上训练,支持多种语言和代码、数学等数据。Qwen-72B模型具有出色的评估效果,在数学逻辑和意图理解等方面超过了其他开源模型,并且支持多语言扩展。此外,阿里巴巴还开源了18亿参数规模的Qwen-1.8B模型,虽然规模较小但效果不错。Qwen-72B模型已对学术和个人完全开放,商用情况下月活低于100万可直接商用。有兴趣的用户可以通过相关链接获取模型地址和资源信息。
|
XML 数据采集 存储
使用Java和XPath在XML文档中精准定位数据
在数据驱动的时代,从复杂结构中精确提取信息至关重要。XML被广泛用于数据存储与传输,而XPath则能高效地在这些文档中导航和提取数据。本文深入探讨如何使用Java和XPath精准定位XML文档中的数据,并通过小红书的实际案例进行分析。首先介绍了XML及其挑战,接着阐述了XPath的优势。然后,提出从大型XML文档中自动提取特定产品信息的需求,并通过代理IP技术、设置Cookie和User-Agent以及多线程技术来解决实际网络环境下的数据抓取问题。最后,提供了一个Java示例代码,演示如何集成这些技术以高效地从XML源中抓取数据。
371 7
使用Java和XPath在XML文档中精准定位数据
|
Docker 容器 网络协议
|
9月前
|
JSON 自然语言处理 Java
OpenAI API深度解析:参数、Token、计费与多种调用方式
随着人工智能技术的飞速发展,OpenAI API已成为许多开发者和企业的得力助手。本文将深入探讨OpenAI API的参数、Token、计费方式,以及如何通过Rest API(以Postman为例)、Java API调用、工具调用等方式实现与OpenAI的交互,并特别关注调用具有视觉功能的GPT-4o使用本地图片的功能。此外,本文还将介绍JSON模式、可重现输出的seed机制、使用代码统计Token数量、开发控制台循环聊天,以及基于最大Token数量的消息列表限制和会话长度管理的控制台循环聊天。
3247 7
|
10月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
1086 1
|
Java Linux Shell
centos7内网离线安装face_recognition、python、pip、CMake、dlib,离线升级gcc/切换gcc,文末有face_recognition的docker版本
公司项目需要人脸识别,本来app自带人脸识别,结果api支持的设备试了一圈就一个同事的华为Mate40Pro可以,所以使用无望。接着找了一下免费的java离线人脸识别sdk,发现虹软的确实简单好用,一会就在linux上弄好并测试通过了,然而在准备集成进去开写代码时,不小心看到了一眼首次激活需联网,后续方可离线使用,好吧,我们内网机器首次都不可能的,接着看了下离线激活方法,首先需要企业认证,这一步我们肯定没法做的,毕竟不是之前的小公司了,营业执照啥的随便给我肯定不行,直接放弃了。后来在同事推荐下看了下face_recognition这个项目,之前基本没用过python,于是有了漫长的踩坑之旅。
1138 1