如何将Avro数据加载到Spark

简介:

这是一篇翻译,原文来自:How to load some Avro data into Spark

首先,为什么使用 Avro ?

最基本的格式是 CSV ,其廉价并且不需要顶一个一个 schema 和数据关联。

随后流行起来的一个通用的格式是 XML,其有一个 schema 和 数据关联,XML 广泛的使用于 Web Services 和 SOA 架构中。不幸的是,其非常冗长,并且解析 XML 需要消耗内存。

另外一种格式是 JSON,其非常流行易于使用因为它非常方便易于理解。

这些格式在 Big Data 环境中都是不可拆分的,这使得他们难于使用。在他们之上使用一个压缩机制(Snappy,Gzip)并不能解决这个问题。

因此不同的数据格式出现了。Avro 作为一种序列化平台被广泛使用,因为它能跨语言,提供了一个小巧紧凑的快速的二进制格式,支持动态 schema 发现(通过它的泛型)和 schema 演变,并且是可压缩和拆分的。它还提供了复杂的数据结构,例如嵌套类型。

例子

让我们来看一个例子,创建一个 Avro schema 并生成一些数据。在一个真实案例的例子中,组织机构通常有一些更加普通的格式,例如 XML,的数据,并且他们需要通过一些工具例如 JAXB 将他们的数据转换成 Avro。我们来使用这个例子,其中 twitter.avsc 如下:

{
    
   "type" : "record",
   "name" : "twitter_schema",
   "namespace" : "com.miguno.avro",
   "fields" : [
        {
         "name" : "username",
               "type" : "string",
              "doc"  : "Name of the user account on Twitter.com"   },
         {
    
             "name" : "tweet",
             "type" : "string",
             "doc"  : "The content of the user's Twitter message"   },
         {
    
             "name" : "timestamp",
             "type" : "long",
             "doc"  : "Unix epoch time in seconds"   } 
    ],
   "doc:" : "A basic schema for storing Twitter messages" 
}

twitter.json 中有一些数据:

{
    "username":"miguno","tweet":"Rock: Nerf paper, scissors is fine.","timestamp": 1366150681 } 
{
    "username":"BlizzardCS","tweet":"Works as intended.  Terran is IMBA.","timestamp": 1366154481 }

我们将这些数据转换成二进制的 Avro 格式:

$ java -jar ~/avro-tools-1.7.7.jar fromjson --schema-file twitter.avsc twitter.json > twitter.avro

然后,我们将 Avro 数据转换为 Java:

$ java -jar /app/avro/avro-tools-1.7.7.jar compile schema /app/avro/data/twitter.avsc /app/avro/data/

现在,我们编译这些类并将其打包:

$ CLASSPATH=/app/avro/avro-1.7.7-javadoc.jar:/app/avro/avro-mapred-1.7.7-hadoop1.jar:/app/avro/avro-tools-1.7.7.jar
$ javac -classpath $CLASSPATH /app/avro/data/com/miguno/avro/twitter_schema.java
$ jar cvf Twitter.jar com/miguno/avro/*.class

我们启动 Spark,并将上面创建的 Jar 和一些需要的库(Hadoop 和 Avro)传递给 Spark 程序:

$ ./bin/spark-shell --jars /app/avro/avro-mapred-1.7.7-hadoop1.jar,/avro/avro-1.7.7.jar,/app/avro/data/Twitter.jar

在 REPL 中,我们获取数据并创建一个 RDD:

scala>
import com.miguno.avro.twitter_schema
import org.apache.avro.file.DataFileReader;
import org.apache.avro.file.DataFileWriter;
import org.apache.avro.io.DatumReader;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.mapreduce.AvroKeyInputFormat
import org.apache.avro.mapred.AvroKey
import org.apache.hadoop.io.NullWritable
import org.apache.avro.mapred.AvroInputFormat
import org.apache.avro.mapred.AvroWrapper
import org.apache.avro.generic.GenericRecord
import org.apache.avro.mapred.{AvroInputFormat, AvroWrapper}
import org.apache.hadoop.io.NullWritable


val path = "/app/avro/data/twitter.avro"
val avroRDD = sc.hadoopFile[AvroWrapper[GenericRecord], NullWritable, AvroInputFormat[GenericRecord]](path)
avroRDD.map(l => new String(l._1.datum.get("username").toString() ) ).first

返回结果:

res2: String = miguno

一些注意事项:

翻译结束。


接下来,我将上述过程在 CDH 5.3 集群中测试一遍。

验证

首先,在集群一个节点创建 twitter.avsc 和 twitter.json 两个文件。

然后,使用 avro-tools 将这些数据转换成二进制的 Avro 格式:

$ java -jar /usr/lib/avro/avro-tools.jar fromjson --schema-file twitter.avsc twitter.json > twitter.avro

这时候会生成 avro 文件:

$ ll
总用量 12
-rw-r--r-- 1 root root 543  3月 25 15:13 twitter.avro
-rw-r--r-- 1 root root 590  3月 25 15:12 twitter.avsc
-rw-r--r-- 1 root root 191  3月 25 15:12 twitter.json

将 Avro 数据转换为 Java:

$ java -jar /usr/lib/avro/avro-tools.jar compile schema twitter.avsc .

这时候会生成 twitter_schema.java 文件:

$ tree
.
├── com
│   └── miguno
│       └── avro
│           └── twitter_schema.java
├── twitter.avro
├── twitter.avsc
└── twitter.json

这时候会生成一个 Twitter.jar 的 jar 包。

编译这些类并将其打包:

$ CLASSPATH=/usr/lib/avro/avro-mapred-hadoop2.jar:/usr/lib/avro/avro-tools.jar
$ javac -classpath $CLASSPATH com/miguno/avro/twitter_schema.java
$ jar cvf Twitter.jar com/miguno/avro/*.class

在当前目录,运行 spark-shell:

spark-shell --jars /usr/lib/avro/avro-mapred-hadoop2.jar,/usr/lib/avro/avro.jar,Twitter.jar

将 twitter.avro 上传到 hdfs:

hadoop fs -put twitter.avro

在 REPL 中,我们创建一个 RDD 并查看结果是否和上面一致:

scala>
import com.miguno.avro.twitter_schema;
import org.apache.avro.file.DataFileReader;
import org.apache.avro.file.DataFileWriter;
import org.apache.avro.io.DatumReader;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.mapreduce.AvroKeyInputFormat
import org.apache.avro.mapred.AvroKey
import org.apache.hadoop.io.NullWritable
import org.apache.avro.mapred.AvroInputFormat
import org.apache.avro.mapred.AvroWrapper
import org.apache.avro.generic.GenericRecord
import org.apache.avro.mapred.{AvroInputFormat, AvroWrapper}
import org.apache.hadoop.io.NullWritable


val path = "twitter.avro"
val avroRDD = sc.hadoopFile[AvroWrapper[GenericRecord], NullWritable, AvroInputFormat[GenericRecord]](path)
avroRDD.map(l => new String(l._1.datum.get("username").toString() ) ).first

更多的 Avro Tools 用法,可以参考 Avro 介绍

目录
相关文章
|
4月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
307 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
5月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
108 0
|
5月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
82 0
|
5月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
133 0
|
4月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
198 6
|
4月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
256 2
|
4月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
228 1
|
4月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
111 1
|
5月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
140 1
|
5月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
174 0