Spark SQL中的DataFrame

简介:

在2014年7月1日的 Spark Summit 上,Databricks 宣布终止对 Shark 的开发,将重点放到 Spark SQL 上。在会议上,Databricks 表示,Shark 更多是对 Hive 的改造,替换了 Hive 的物理执行引擎,因此会有一个很快的速度。然而,不容忽视的是,Shark 继承了大量的 Hive 代码,因此给优化和维护带来了大量的麻烦。随着性能优化和先进分析整合的进一步加深,基于 MapReduce 设计的部分无疑成为了整个项目的瓶颈。 详细内容请参看 Shark, Spark SQL, Hive on Spark, and the future of SQL on Spark

Spark SQL 允许 Spark 执行用 SQL, HiveQL 或者 Scala 表示的关系查询。在 Spark 1.3 之前,这个模块的核心是一个新类型的 RDD-SchemaRDD。 SchemaRDDs 由对象组成,行对象拥有一个模式(scheme) 来描述行中每一列的数据类型。SchemaRDD 与关系型数据库中的表很相似,可以通过存在的 RDD、一个 Parquet 文件、结构化的文件、外部数据库、或者对存储在 Apache Hive 中的数据执行 HiveSQL 查询中创建。

当前 Spark SQL 还处于 alpha 阶段,一些 API 在将将来的版本中可能会有所改变。例如,Apache Spark 1.3发布,新增Data Frames API,改进Spark SQL和MLlib。在 Spark 1.3 中,SchemaRDD 改为叫做 DataFrame。

本文是基于 Spark 1.3 写成,特此说明。

创建 SQLContext

Spark SQL 中所有相关功能的入口点是 SQLContext 类或者它的子类, 创建一个 SQLContext 的所有需要仅仅是一个 SparkContext。

使用 Scala 创建方式如下:

val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

使用 Java 创建方式如下:

JavaSparkContext sc = ...; // An existing JavaSparkContext.
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

使用 Python 创建方式如下:

from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)

除了一个基本的 SQLContext,你也能够创建一个 HiveContext,它支持基本 SQLContext 所支持功能的一个超集。它的额外的功能包括用更完整的 HiveQL 分析器写查询去访问 HiveUDFs 的能力、 从 Hive 表读取数据的能力。用 HiveContext 你不需要一个已经存在的 Hive 开启,SQLContext 可用的数据源对 HiveContext 也可用。HiveContext 分开打包是为了避免在 Spark 构建时包含了所有 的 Hive 依赖。如果对你的应用程序来说,这些依赖不存在问题,Spark 1.3 推荐使用 HiveContext。以后的稳定版本将专注于为 SQLContext 提供与 HiveContext 等价的功能。

用来解析查询语句的特定 SQL 变种语言可以通过 spark.sql.dialect 选项来选择。这个参数可以通过两种方式改变,一种方式是通过 setConf 方法设定,另一种方式是在 SQL 命令中通过 SET key=value 来设定。对于 SQLContext,唯一可用的方言是 “sql”,它是 Spark SQL 提供的一个简单的 SQL 解析器。在 HiveContext 中,虽然也支持”sql”,但默认的方言是 “hiveql”,这是因为 HiveQL 解析器更完整。

创建 DataFrame

使用 SQLContext,应用可以从一个存在的 RDD、Hive 表或者数据源中创建 DataFrame。

下载测试数据 people.json,并将其上传到 HDFS 上:

$ wget https://raw.githubusercontent.com/apache/spark/master/examples/src/main/resources/people.json
$ hadoop fs -put people.json

下面是使用 Scala 创建方式:

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

val df = sqlContext.jsonFile("people.json")

// Displays the content of the DataFrame to stdout
df.show()

下面是使用 Java 创建方式:

JavaSparkContext sc = ...; // An existing JavaSparkContext.
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

DataFrame df = sqlContext.jsonFile("people.json");

// Displays the content of the DataFrame to stdout
df.show();

下面是使用 Python 创建方式:

from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)

df = sqlContext.jsonFile("people.json")

# Displays the content of the DataFrame to stdout
df.show()

DataFrame API 请参考 ScalaJava 以及 Python

DataFrame 操作

运行 spark-shell 执行下面代码进行测试,运行的代码和输出结果如下:

$ spark-shell
Spark context available as sc.
SQL context available as sqlContext.

// Create the DataFrame
scala> val df = sqlContext.jsonFile("people.json")

scala> df.count()
res1: Long = 3

scala> df.first()
res2: org.apache.spark.sql.Row = [null,Michael]

scala> df.head()
res3: org.apache.spark.sql.Row = [null,Michael]

scala> df.collect()
res4: Array[org.apache.spark.sql.Row] = Array([null,Michael], [30,Andy], [19,Justin])

scala> df.collectAsList()
res5: java.util.List[org.apache.spark.sql.Row] = [[null,Michael], [30,Andy], [19,Justin]]

// Show the content of the DataFrame
scala> df.show()
age  name
null Michael
30   Andy
19   Justin

scala> df.take(2)
res6: Array[org.apache.spark.sql.Row] = Array([null,Michael], [30,Andy])

scala> df.columns
res7: Array[String] = Array(age, name)

scala> df.dtypes
res8: Array[(String, String)] = Array((age,LongType), (name,StringType))

// Print the schema in a tree format
scala> df.printSchema()
root
 |-- age: long (nullable = true)
 |-- name: string (nullable = true)

scala> df.explain()
== Physical Plan ==
PhysicalRDD [age#0L,name#1], MapPartitionsRDD[96] at map at JsonRDD.scala:41

// age column
scala> val ageCol = df("age")  

// The following creates a new column that increases everybody's age by 10.
scala> df("age") + 10 

// Select only the "name" column
scala> df.select("name").show()
name
Michael
Andy
Justin

// Select everybody, but increment the age by 1
scala> df.select(df("name"), df("age")+1).show()
name    (age + 1)
Michael null
Andy    31
Justin  20

// Select people older than 21
scala> df.filter(df("age") > 21).show()
age name
30  Andy

// Count people by age
scala> df.groupBy("age").count().show()
age  count
null 1
19   1
30   1

运行 SQL 查询

SQLContext 有一个 sql 方法,可以运行 SQL 查询。

sqlContext.sql("SELECT * FROM table")

Spark SQL 支持两种方法将存在的 RDD 转换为 DataFrame 。第一种方法使用反射来推断包含特定对象类型的 RDD 的模式。在你写 spark 程序的同时,当你已经知道了模式,这种基于反射的方法可以使代码更简洁并且程序工作得更好。

第二种方法是通过一个编程接口来实现,这个接口允许你构造一个模式,然后在存在的 RDD 上使用它。虽然这种方法更冗长,但是它允许你在运行期之前不知道列以及列的类型的情况下构造 DataFrame。

SQLContext 的 API 见 SQLContext 

利用反射推断模式

Spark SQL的 Scala 接口支持将包含样本类的 RDD 自动转换为 DataFrame。这个样本类定义了表的模式。样本类的参数名字通过反射来读取,然后作为列的名字。样本类可以嵌套或者包含复杂的类型如序列或者数组。这个 RDD 可以隐式转化为一个 DataFrame,然后注册为一个表,表可以在后续的 sql 语句中使用。

 people.txt 作为测试数据,使用 Scala 语言来创建 DataFrame:

// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
// you can use custom classes that implement the Product interface.
case class People(name: String, age: Int)

// Create an RDD of Person objects and register it as a table.
val people = sc.textFile("people.txt").map(_.split(",")).map(p => People(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by ordinal.
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

对于 Java 语言,需要创建一个 JavaBean,然后在将数据映射到它上面:

public static class People implements Serializable {
  private String name;
  private int age;

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public int getAge() {
    return age;
  }

  public void setAge(int age) {
    this.age = age;
  }
}

然后,使用 sqlContext 的 createDataFrame 方法,从 JavaBean 和数据上创建一个 DataFrame 并注册一个表,下面是一个比较完整的例子:

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

import java.io.Serializable;
import java.util.Arrays;
import java.util.List;

public class JavaSparkSQLByReflection {
    public static void main(String[] args) throws Exception {
        SparkConf sparkConf = new SparkConf().setAppName("JavaSparkSQLByReflection");
        JavaSparkContext ctx = new JavaSparkContext(sparkConf);
        SQLContext sqlCtx = new SQLContext(ctx);

        System.out.println("=== Data source: RDD ===");
        // Load a text file and convert each line to a Java Bean.
        JavaRDD<People> people = ctx.textFile("people.txt").map(
                new Function<String, People>() {
                    @Override
                    public People call(String line) {
                        String[] parts = line.split(",");

                        People people = new People();
                        people.setName(parts[0]);
                        people.setAge(Integer.parseInt(parts[1].trim()));
                        return people;
                    }
                });

        // Apply a schema to an RDD of Java Beans and register it as a table.
        DataFrame schemaPeople = sqlCtx.createDataFrame(people, People.class);
        schemaPeople.registerTempTable("people");

        // SQL can be run over RDDs that have been registered as tables.
        DataFrame teenagers = sqlCtx.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19");

        // The results of SQL queries are DataFrames and support all the normal RDD operations.
        // The columns of a row in the result can be accessed by ordinal.
        List<String> teenagerNames = teenagers.toJavaRDD().map(new Function<Row, String>() {
            @Override
            public String call(Row row) {
                return "Name: " + row.getString(0);
            }
        }).collect();

        for (String name : teenagerNames) {
            System.out.println(name);
        }


        System.out.println("=== Data source: Parquet File ===");
        // DataFrames can be saved as parquet files, maintaining the schema information.
        schemaPeople.saveAsParquetFile("people.parquet");

        // Read in the parquet file created above.
        // Parquet files are self-describing so the schema is preserved.
        // The result of loading a parquet file is also a DataFrame.
        DataFrame parquetFile = sqlCtx.parquetFile("people.parquet");

        //Parquet files can also be registered as tables and then used in SQL statements.
        parquetFile.registerTempTable("parquetFile");
        DataFrame teenagers2 =
                sqlCtx.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19");
        teenagerNames = teenagers2.toJavaRDD().map(new Function<Row, String>() {
            @Override
            public String call(Row row) {
                return "Name: " + row.getString(0);
            }
        }).collect();
        for (String name : teenagerNames) {
            System.out.println(name);
        }

        System.out.println("=== Data source: JSON Dataset ===");
        // A JSON dataset is pointed by path.
        // The path can be either a single text file or a directory storing text files.
        String path = "people.json";
        // Create a DataFrame from the file(s) pointed by path
        DataFrame peopleFromJsonFile = sqlCtx.jsonFile(path);

        // Because the schema of a JSON dataset is automatically inferred, to write queries,
        // it is better to take a look at what is the schema.
        peopleFromJsonFile.printSchema();
        // The schema of people is ...
        // root
        //  |-- age: IntegerType
        //  |-- name: StringType

        // Register this DataFrame as a table.
        peopleFromJsonFile.registerTempTable("people");

        // SQL statements can be run by using the sql methods provided by sqlCtx.
        DataFrame teenagers3 = sqlCtx.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19");

        // The results of SQL queries are DataFrame and support all the normal RDD operations.
        // The columns of a row in the result can be accessed by ordinal.
        teenagerNames = teenagers3.toJavaRDD().map(new Function<Row, String>() {
            @Override
            public String call(Row row) {
                return "Name: " + row.getString(0);
            }
        }).collect();
        for (String name : teenagerNames) {
            System.out.println(name);
        }

        // Alternatively, a DataFrame can be created for a JSON dataset represented by
        // a RDD[String] storing one JSON object per string.
        List<String> jsonData = Arrays.asList(
                "{\"name\":\"Yin\",\"address\":{\"city\":\"Columbus\",\"state\":\"Ohio\"}}");
        JavaRDD<String> anotherPeopleRDD = ctx.parallelize(jsonData);
        DataFrame peopleFromJsonRDD = sqlCtx.jsonRDD(anotherPeopleRDD.rdd());


        // Take a look at the schema of this new DataFrame.
        peopleFromJsonRDD.printSchema();
        // The schema of anotherPeople is ...
        // root
        //  |-- address: StructType
        //  |    |-- city: StringType
        //  |    |-- state: StringType
        //  |-- name: StringType
        peopleFromJsonRDD.registerTempTable("people2");

        DataFrame peopleWithCity = sqlCtx.sql("SELECT name, address.city FROM people2");
        List<String> nameAndCity = peopleWithCity.toJavaRDD().map(new Function<Row, String>() {
            @Override
            public String call(Row row) {
                return "Name: " + row.getString(0) + ", City: " + row.getString(1);
            }
        }).collect();
        for (String name : nameAndCity) {
            System.out.println(name);
        }

        ctx.stop();
    }
}

使用 Python 语言则需要用到 sqlContext 的 inferSchema 方法:

# sc is an existing SparkContext.
from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)

# Load a text file and convert each line to a Row.
lines = sc.textFile("people.txt")
parts = lines.map(lambda l: l.split(","))
people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))

# Infer the schema, and register the DataFrame as a table.
schemaPeople = sqlContext.inferSchema(people)
schemaPeople.registerTempTable("people")

# SQL can be run over DataFrames that have been registered as a table.
teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")

# The results of SQL queries are RDDs and support all the normal RDD operations.
teenNames = teenagers.map(lambda p: "Name: " + p.name)
for teenName in teenNames.collect():
  print teenName

编程指定模式

当样本类不能提前确定(例如,记录的结构是经过编码的字符串,或者一个文本集合将会被解析,不同的字段投影给不同的用户),一个 DataFrame 可以通过三步来创建。

  • 从原来的 RDD 创建一个行的 RDD
  • 创建由一个 StructType 表示的模式与第一步创建的 RDD 的行结构相匹配
  • 在行 RDD 上通过 applySchema 方法应用模式

直接贴出代码,Scala 语言创建方式:

val sc = new SparkContext(new SparkConf().setAppName("ScalaSparkSQL"))
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// Create an RDD
val people = sc.textFile("people.txt")

// The schema is encoded in a string
val schemaString = "name age"

// Import Spark SQL data types and Row.
import org.apache.spark.sql._

// Generate the schema based on the string of schema
val schema =
  StructType(
    schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))

// Convert records of the RDD (people) to Rows.
val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim))

// Apply the schema to the RDD.
val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)

// Register the DataFrames as a table.
peopleDataFrame.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.
val results = sqlContext.sql("SELECT name FROM people")

// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by ordinal.
results.map(t => "Name: " + t(0)).collect().foreach(println)

Java 创建的方式或许对一个 Java 程序员来说,更容易理解:

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

import java.util.List;

public class JavaSparkSQLBySchema {
    public static void main(String[] args) throws Exception {
        SparkConf sparkConf = new SparkConf().setAppName("JavaSparkSQLBySchema");
        JavaSparkContext ctx = new JavaSparkContext(sparkConf);
        SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

        // Load a text file and convert each line to a JavaBean.
        JavaRDD<String> people = sc.textFile("people.txt");

        // The schema is encoded in a string
        String schemaString = "name age";

        // Generate the schema based on the string of schema
        List<StructField> fields = new ArrayList<StructField>();
        for (String fieldName : schemaString.split(" ")) {
            fields.add(DataType.createStructField(fieldName, DataType.StringType, true));
        }
        StructType schema = DataType.createStructType(fields);

        // Convert records of the RDD (people) to Rows.
        JavaRDD<Row> rowRDD = people.map(
                new Function<String, Row>() {
                    public Row call(String record) throws Exception {
                        String[] fields = record.split(",");
                        return Row.create(fields[0], fields[1].trim());
                    }
                });

        // Apply the schema to the RDD.
        DataFrame peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema);

        // Register the DataFrame as a table.
        peopleDataFrame.registerTempTable("people");

        // SQL can be run over RDDs that have been registered as tables.
        DataFrame results = sqlContext.sql("SELECT name FROM people");

        // The results of SQL queries are DataFrames and support all the normal RDD operations.
        // The columns of a row in the result can be accessed by ordinal.
        List<String> names = results.map(new Function<Row, String>() {
            public String call(Row row) {
                return "Name: " + row.getString(0);
            }
        }).collect();
    }
}

Python 语言的例子:

# Import SQLContext and data types
from pyspark.sql import *

# sc is an existing SparkContext.
sqlContext = SQLContext(sc)

# Load a text file and convert each line to a tuple.
lines = sc.textFile("people.txt")
parts = lines.map(lambda l: l.split(","))
people = parts.map(lambda p: (p[0], p[1].strip()))

# The schema is encoded in a string.
schemaString = "name age"

fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
schema = StructType(fields)

# Apply the schema to the RDD.
schemaPeople = sqlContext.createDataFrame(people, schema)

# Register the DataFrame as a table.
schemaPeople.registerTempTable("people")

# SQL can be run over DataFrames that have been registered as a table.
results = sqlContext.sql("SELECT name FROM people")

# The results of SQL queries are RDDs and support all the normal RDD operations.
names = results.map(lambda p: "Name: " + p.name)
for name in names.collect():
  print name

总结

本文主要介绍了 DataFrame 是什么以及两种从 RDD 创建 DataFrame 的方法,完整的代码见 Github

目录
相关文章
|
1月前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
2月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
71 0
|
2月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
88 0
|
2月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
63 0
|
2月前
|
SQL 分布式计算 大数据
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
77 0
|
SQL 分布式计算 关系型数据库
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
131 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
72 0
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
45 0
|
2月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
101 0