[Google Guava] 1.5-Throwables:简化异常和错误的传播与检查

简介:

原文链接 译者: 沈义扬

异常传播

有时候,你会想把捕获到的异常再次抛出。这种情况通常发生在Error或RuntimeException被捕获的时候,你没想捕获它们,但是声明捕获Throwable和Exception的时候,也包括了了Error或RuntimeException。Guava提供了若干方法,来判断异常类型并且重新传播异常。例如:


1 try {
2     someMethodThatCouldThrowAnything();
3 } catch (IKnowWhatToDoWithThisException e) {
4     handle(e);
5 } catch (Throwable t) {
6     Throwables.propagateIfInstanceOf(t, IOException.class);
7     Throwables.propagateIfInstanceOf(t, SQLException.class);
8     throw Throwables.propagate(t);
9 }

所有这些方法都会自己决定是否要抛出异常,但也能直接抛出方法返回的结果——例如,throw Throwables.propagate(t);—— 这样可以向编译器声明这里一定会抛出异常。

Guava中的异常传播方法简要列举如下:

RuntimeException   propagate(Throwable) 如果Throwable是Error或RuntimeException,直接抛出;否则把Throwable包装成RuntimeException抛出。返回类型是RuntimeException,所以你可以像上面说的那样写成throw Throwables.propagate(t),Java编译器会意识到这行代码保证抛出异常。
void propagateIfInstanceOf( Throwable, Class<X extends   Exception>) throws X Throwable类型为X才抛出
void propagateIfPossible( Throwable) Throwable类型为Error或RuntimeException才抛出
void   propagateIfPossible( Throwable, Class<X extends Throwable>) throws X Throwable类型为X, Error或RuntimeException才抛出

Throwables.propagate的用法

模仿Java7的多重异常捕获和再抛出

通常来说,如果调用者想让异常传播到栈顶,他不需要写任何catch代码块。因为他不打算从异常中恢复,他可能就不应该记录异常,或者有其他的动作。他可能是想做一些清理工作,但通常来说,无论操作是否成功,清理工作都要进行,所以清理工作可能会放在finallly代码块中。但有时候,捕获异常然后再抛出也是有用的:也许调用者想要在异常传播之前统计失败的次数,或者有条件地传播异常。

当只对一种异常进行捕获和再抛出时,代码可能还是简单明了的。但当多种异常需要处理时,却可能变得一团糟:


01 @Override public void run() {
02     try {
03         delegate.run();
04     } catch (RuntimeException e) {
05         failures.increment();
06         throw e;
07     }catch (Error e) {
08         failures.increment();
09         throw e;
10     }
11 }

Java7用多重捕获解决了这个问题:


1 } catch (RuntimeException | Error e) {
2     failures.increment();
3     throw e;
4 }

非Java7用户却受困于这个问题。他们想要写如下代码来统计所有异常,但是编译器不允许他们抛出Throwable(译者注:这种写法把原本是Error或RuntimeException类型的异常修改成了Throwable,因此调用者不得不修改方法签名):


1 } catch (Throwable t) {
2     failures.increment();
3     throw t;
4 }

解决办法是用throw Throwables.propagate(t)替换throw t。在限定情况下(捕获Error和RuntimeException),Throwables.propagate和原始代码有相同行为。然而,用Throwables.propagate也很容易写出有其他隐藏行为的代码。尤其要注意的是,这个方案只适用于处理RuntimeException 或Error。如果catch块捕获了受检异常,你需要调用propagateIfInstanceOf来保留原始代码的行为,因为Throwables.propagate不能直接传播受检异常。

总之,Throwables.propagate的这种用法也就马马虎虎,在Java7中就没必要这样做了。在其他Java版本中,它可以减少少量的代码重复,但简单地提取方法进行重构也能做到这一点。此外,使用propagate会意外地包装受检异常。

非必要用法:把抛出的Throwable转为Exception

有少数API,尤其是Java反射API和(以此为基础的)Junit,把方法声明成抛出Throwable。和这样的API交互太痛苦了,因为即使是最通用的API通常也只是声明抛出Exception。当确定代码会抛出Throwable,而不是Exception或Error时,调用者可能会用Throwables.propagate转化Throwable。这里有个用Callable执行Junit测试的范例:


01 public Void call() throws Exception {
02     try {
03         FooTest.super.runTest();
04     } catch (Throwable t) {
05         Throwables.propagateIfPossible(t, Exception.class);
06         Throwables.propagate(t);
07     }
08  
09     return null;
10 }

在这儿没必要调用propagate()方法,因为propagateIfPossible传播了Throwable之外的所有异常类型,第二行的propagate就变得完全等价于throw new RuntimeException(t)。(题外话:这个例子也提醒我们,propagateIfPossible可能也会引起混乱,因为它不但会传播参数中给定的异常类型,还抛出Error和RuntimeException)

这种模式(或类似于throw new RuntimeException(t)的模式)在Google代码库中出现了超过30次。(搜索’propagateIfPossible[^;]* Exception.class[)];’)绝大多数情况下都明确用了”throw new RuntimeException(t)”。我们也曾想过有个”throwWrappingWeirdThrowable”方法处理Throwable到Exception的转化。但考虑到我们用两行代码实现了这个模式,除非我们也丢弃propagateIfPossible方法,不然定义这个throwWrappingWeirdThrowable方法也并没有太大必要。

Throwables.propagate的有争议用法

争议一:把受检异常转化为非受检异常

原则上,非受检异常代表bug,而受检异常表示不可控的问题。但在实际运用中,即使JDK也有所误用——如Object.clone()、Integer. parseInt(String)、URI(String)——或者至少对某些方法来说,没有让每个人都信服的答案,如URI.create(String)的异常声明。

因此,调用者有时不得不把受检异常和非受检异常做相互转化:


1 try {
2     return Integer.parseInt(userInput);
3 } catch (NumberFormatException e) {
4     throw new InvalidInputException(e);
5 }

1 try {
2     return publicInterfaceMethod.invoke();
3 } catch (IllegalAccessException e) {
4     throw new AssertionError(e);
5 }

有时候,调用者会使用Throwables.propagate转化异常。这样做有没有什么缺点?最主要的恐怕是代码的含义不太明显。throw Throwables.propagate(ioException)做了什么?throw new RuntimeException(ioException)做了什么?这两者做了同样的事情,但后者的意思更简单直接。前者却引起了疑问:”它做了什么?它并不只是把异常包装进RuntimeException吧?如果它真的只做了包装,为什么还非得要写个方法?”。应该承认,这些问题部分是因为”propagate”的语义太模糊了(用来抛出未声明的异常吗?)。也许”wrapIfChecked”更能清楚地表达含义。但即使方法叫做”wrapIfChecked”,用它来包装一个已知类型的受检异常也没什么优点。甚至会有其他缺点:也许比起RuntimeException,还有更合适的类型——如IllegalArgumentException。
我们有时也会看到propagate被用于传播可能为受检的异常,结果是代码相比以前会稍微简短点,但也稍微有点不清晰:


1 } catch (RuntimeException e) {
2     throw e;
3 }catch (Exception e) {
4     throw new RuntimeException(e);
5 }

1 } catch (Exception e) {
2  throw Throwables.propagate(e);
3 }

然而,我们似乎故意忽略了把检查型异常转化为非检查型异常的合理性。在某些场景中,这无疑是正确的做法,但更多时候它被用于避免处理受检异常。这让我们的话题变成了争论受检异常是不是坏主意了,我不想对此多做叙述。但可以这样说,Throwables.propagate不是为了鼓励开发者忽略IOException这样的异常。

争议二:异常穿隧

但是,如果你要实现不允许抛出异常的方法呢?有时候你需要把异常包装在非受检异常内。这种做法挺好,但我们再次强调,没必要用propagate方法做这种简单的包装。实际上,手动包装可能更好:如果你手动包装了所有异常(而不仅仅是受检异常),那你就可以在另一端解包所有异常,并处理极少数特殊场景。此外,你可能还想把异常包装成特定的类型,而不是像propagate这样统一包装成RuntimeException。

争议三:重新抛出其他线程产生的异常


1 try {
2     return future.get();
3 } catch (ExecutionException e) {
4     throw Throwables.propagate(e.getCause());
5 }

对这样的代码要考虑很多方面:

  • ExecutionException的cause可能是受检异常,见上文”争议一:把检查型异常转化为非检查型异常”。但如果我们确定future对应的任务不会抛出受检异常呢?(可能future表示runnable任务的结果——译者注:如ExecutorService中的submit(Runnable task, T
    result)方法
    )如上所述,你可以捕获异常并抛出AssertionError。尤其对于Future,请考虑 Futures.get方法。(TODO:对future.get()抛出的另一个异常InterruptedException作一些说明)
  • ExecutionException的cause可能直接是Throwable类型,而不是Exception或Error。(实际上这不大可能,但你想直接重新抛出cause的话,编译器会强迫你考虑这种可能性)见上文”用法二:把抛出Throwable改为抛出Exception”。
  • ExecutionException的cause可能是非受检异常。如果是这样的话,cause会直接被Throwables.propagate抛出。不幸的是,cause的堆栈信息反映的是异常最初产生的线程,而不是传播异常的线程。通常来说,最好在异常链中同时包含这两个线程的堆栈信息,就像ExecutionException所做的那样。(这个问题并不单单和propagate方法相关;所有在其他线程中重新抛出异常的代码都需要考虑这点)

异常原因链

Guava提供了如下三个有用的方法,让研究异常的原因链变得稍微简便了,这三个方法的签名是不言自明的:

Throwable   getRootCause(Throwable)
List<Throwable>   getCausalChain(Throwable)
String   getStackTraceAsString(Throwable)
目录
相关文章
|
11月前
|
数据采集 SQL Oracle
从ORACLE源进行批量数据迁移到GBase8a参考示例
从ORACLE源进行批量数据迁移到GBase8a参考示例
从ORACLE源进行批量数据迁移到GBase8a参考示例
|
11月前
|
人工智能 前端开发 Serverless
主动式智能导购 AI 助手构建解决方案深度评测
《主动式智能导购 AI 助手构建》解决方案通过 Multi-Agent 架构,结合百炼大模型和函数计算,实现了精准的商品推荐。部署流程清晰,但在数据类型选择和配置优化方面存在不足。方案在生产环境应用中提供了基础指导,但仍需完善前端开发指南和数据管理机制,以更好地满足企业需求。
|
11月前
|
监控 数据挖掘 API
探索淘宝商品评论接口:功能、应用与开发者指南
在电子商务蓬勃发展的今天,商品评论已成为消费者购买决策的重要依据之一。作为国内最大的电商平台,淘宝通过其强大的商品评论系统,不仅为消费者提供了丰富的购物参考,也为商家提供了宝贵的用户反馈。而这一切的背后,离不开高效、稳定的商品评论接口支持。本文将深入探讨淘宝商品评论接口的功能、应用场景以及为开发者提供的指南,帮助大家更好地理解并利用这一资源。
|
安全 搜索推荐 Android开发
深入探索Android与iOS的系统架构差异
【10月更文挑战第29天】 在当今的智能手机市场中,Android和iOS无疑是两大主流操作系统。本文旨在深入探讨这两个系统的架构差异,从底层的操作系统设计到用户界面的呈现,以及它们如何影响了开发者和用户的体验。通过对比分析,我们可以更清晰地理解这两种平台的优势与局限,为开发者在选择开发平台时提供有价值的参考,同时也为用户选择设备提供一定的指导。
299 2
|
存储 传感器 监控
物联网:物联网卡为什么没有语音功能
物联网卡(IoT SIM卡)主要是为物联网设备设计的,这些设备包括但不限于智能城市传感器、可穿戴设备、工业监控设备、车联网设备等。与普通的消费者SIM卡相比,物联网卡在功能和设计上存在一些显著的区别,其中不包括语音功能是其重要特点之一。以下是物联网卡没有语音功能的几个主要原因:
物联网卡不能更换地区使用吗
物联网卡(IoT SIM卡)是否能更换地区使用,主要取决于几个关键因素,包括物联网服务提供商的政策、物联网卡的类型(如预付费、后付费)、网络覆盖范围、以及是否存在地理限制等。以下是一些常见的考虑点和操作步骤:
|
算法 数据可视化 定位技术
QGIS+Conda+jupyter玩转Python GIS
QGIS+Conda+jupyter玩转Python GIS
453 1
|
流计算
实时计算 Flink版操作报错合集之如何处理报错:Argument name conflict, there are at least two argument names that are the same
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
消息中间件 测试技术 开发工具
消息队列 MQ操作报错合集之收到"WARN RocketmqClient - consumeMessage Orderly return"警告,是什么原因
在使用消息队列MQ时,可能会遇到各种报错情况。以下是一些常见的错误场景、可能的原因以及解决建议的汇总:1.连接错误、2.消息发送失败、3.消息消费报错、4.消息重试与死信处理、5.资源与权限问题、6.配置错误、7.系统资源限制、8.版本兼容性问题。
330 0
|
关系型数据库 MySQL Linux