位图BITMAP分析(1)

简介: 如今Windows系列已经成为绝大多数用户使用的操作系统,它比DOS成功的一个重要因素是它可视化的漂亮界面。那么Windows是如何显示图象的呢?这就要谈到位图(bitmap)。

如今Windows系列已经成为绝大多数用户使用的操作系统,它比DOS成功的一个重要因素是它可视化的漂亮界面。那么Windows是如何显示图象的呢?这就要谈到位图(bitmap)

我们知道,普通的显示器屏幕是由许许多多点构成的,我们称之为象素。显示时采用扫描的方法:电子枪每次从左到右扫描一行,为每个象素着色,然后从上到下这样扫描若干行,就扫过了一屏。为了防止闪烁,每秒要重复上述过程几十次。例如我们常说的屏幕分辨率为640×480,刷新频率为70Hz,意思是说每行要扫描640个象素,一共有480行,每秒重复扫描屏幕70次。

我们称这种显示器为位映象设备。所谓位映象,就是指一个二维的象素矩阵,而位图就是采用位映象方法显示和存储的图象。

我们先来说说三元色RGB概念。

我们知道,自然界中的所有颜色都可以由红、绿、蓝(RGB)组合而成。有的颜色含有红色成分多一些,如深红;有的含有红色成分少一些,如浅红。针对含有红色成分的多少,可以分成0255256个等级,0级表示不含红色成分;255级表示含有100%的红色成分。同样,绿色和蓝色也被分成256级。这种分级概念称为量化。

这样,根据红、绿、蓝各种不同的组合我们就能表示出256×256×256,约1600万种颜色。这么多颜色对于我们人眼来说已经足够丰富了。

1.1    常见颜色的RGB组合值

颜色

R

G

B

255

0

0

0

255

0

绿

0

0

255

255

255

0

255

0

255

0

255

255

255

255

255

0

0

0

128

128

128

你大概已经明白了,当一幅图中每个象素赋予不同的RGB值时,能呈现出五彩缤纷的颜色了,这样就形成了彩色图。的确是这样的,但实际上的做法还有些差别。

让我们来看看下面的例子。

有一个长宽各为200个象素,颜色数为16色的彩色图,每一个象素都用RGB三个分量表示。因为每个分量有256个级别,要用8(bit),即一个字节(byte)来表示,所以每个象素需要用3个字节。整个图象要用200×200×3,约120k字节,可不是一个小数目呀!如果我们用下面的方法,就能省的多。

因为是一个16色图,也就是说这幅图中最多只有16种颜色,我们可以用一个表:表中的每一行记录一种颜色的RGB值。这样当我们表示一个象素的颜色时,只需要指出该颜色是在第几行,即该颜色在表中的索引值。举个例子,如果表的第0行为25500(红色),那么当某个象素为红色时,只需要标明0即可。

让我们再来计算一下:16种状态可以用4(bit)表示,所以一个象素要用半个字节。整个图象要用200×200×0.5,约20k字节,再加上表占用的字节为3×16=48字节.整个占用的字节数约为前面的1/6,省很多吧?

这张RGB的表,就是我们常说的调色板(Palette),另一种叫法是颜色查找表LUT(Look Up Table),似乎更确切一些。Windows位图中便用到了调色板技术。其实不光是Windows位图,许多图象文件格式如pcxtifgif等都用到了。所以很好地掌握调色板的概念是十分有用的。

有一种图,它的颜色数高达256×256×256种,也就是说包含我们上述提到的RGB颜色表示方法中所有的颜色,这种图叫做真彩色图(true color)。真彩色图并不是说一幅图包含了所有的颜色,而是说它具有显示所有颜色的能力,即最多可以包含所有的颜色。表示真彩色图时,每个象素直接用RGB三个分量字节表示,而不采用调色板技术。原因很明显:如果用调色板,表示一个象素也要用24位,这是因为每种颜色的索引要用24(因为总共有224种颜色,即调色板有224),和直接用RGB三个分量表示用的字节数一样,不但没有任何便宜,还要加上一个256×256×256×3个字节的大调色板。所以真彩色图直接用RGB三个分量表示,它又叫做24位色图。

二、Bmp文件格式
介绍完位图和调色板的概念,下面就让我们来看一看Windows的位图文件(.bmp文件)的格式是什么样子的。   bmp文件大体上分成四个部分。
第一部分为位图文件头BITMAPFILEHEADER,是一个结构,其定义如下:
Typedef   struct   tagBITMAPFILEHEADER{
WORD   bfType;
DWORD   bfSize;
WORD   bfReserved1;
WORD   bfReserved2;
DWORD   bfOffBits;
}   BITMAPFILEHEADER;
这个结构的长度是固定的,为14个字节(WORD为无符号16位整数,DWORD为无符号32位整数),各个域的说明如下:
bfType
指定文件类型,必须是0x424D,即字符串 "BM ",也就是说所有.bmp文件的头两个字节都是 "BM "
bfSize
指定文件大小,包括这14个字节
bfReserved1,bfReserved2
为保留字,不用考虑
bfOffBits
为从文件头到实际的位图数据的偏移字节数,即图3中前三个部分的长度之和。
第二部分为位图信息头BITMAPINFOHEADER,也是一个结构,其定义如下:
typedef   struct   tagBITMAPINFOHEADER{
DWORD   biSize;
LONG   biWidth;
LONG   biHeight;
WORD   biPlanes;
WORD   biBitCount;
DWORD   biCompression;
DWORD   biSizeImage;
LONG   biXPelsPerMeter;
LONG   biYPelsPerMeter;
DWORD   biClrUsed;
DWORD   biClrImportant;
}   BITMAPINFOHEADER;  
这个结构的长度是固定的,为40个字节(WORD为无符号16位整数,DWORD无符号32位整数,LONG为32位整数),各个域的说明如下:
biSize
指定这个结构的长度,为40
biWidth
指定图象的宽度,单位是象素
biHeight
指定图象的高度,单位是象素
biPlanes
必须是1,不用考虑
biBitCount
指定表示颜色时要用到的位数,常用的值为1(黑白二色图),4(16色图),8(256色),16(伪真彩色),24(真彩色图)(新的.bmp格式支持32位色,这里就不做讨论了)。
biCompression
指定位图是否压缩,有效的值为BI_RGB,BI_RLE8,BI_RLE4,BI_BITFIELDS(都是一些Windows定义好的常量)。要说明的是,Windows位图可以采用RLE4,和RLE8的压缩格式,但用的不多。我们今后所讨论的只有第一种不压缩的情况,即biCompression为BI_RGB的情况。
biSizeImage
指定实际的位图数据占用的字节数,其实也可以从以下的公式中计算出来:
biSizeImage=biWidth '*biHeight
要注意的是:上述公式中的biWidth '必须是4的整倍数(所以不是biWidth,而是biWidth ',表示大于或等于biWidth的,离4最近的整倍数。举个例子,如果biWidth=240,则biWidth '=240;如果biWidth=241,biWidth '=244)如果biCompression为BI_RGB,则该项可能为零
biXPelsPerMeter
指定目标设备的水平分辨率,单位是每米的象素个数,关于分辨率的概念,我们将在打印部分详细介绍。
biYPelsPerMeter
指定目标设备的垂直分辨率,单位同上。
biClrUsed
指定本图象实际用到的颜色数,如果该值为零,则用到的颜色数为2的biBitCount次方。
biClrImportant
指定本图象中重要的颜色数,如果该值为零,则认为所有的颜色都是重要的。
第三部分为调色板(Palette),当然,这里是对那些需要调色板的位图文件而言的。有些位图,如真彩色图,前面已经讲过,是不需要调色板的,BITMAPINFOHEADER后直接是位图数据。调色板实际上是一个数组,共有biClrUsed个元素(如果该值为零,则有2的biBitCount次方个元素)。数组中每个元素的类型是一个RGBQUAD结构,占4个字节,其定义如下:
typedef   struct   tagRGBQUAD{
BYTE   rgbBlue;   //该颜色的蓝色分量
BYTE   rgbGreen;   //该颜色的绿色分量
BYTE   rgbRed;   //该颜色的红色分量
BYTE   rgbReserved;   //保留值
}   RGBQUAD;
第四部分就是实际的图象数据了。对于用到调色板的位图,图象数据就是该像素颜在调色板中的索引值,对于真彩色图,图象数据就是实际的R,G,B值。下面就2色,16色,256色位图和真彩色位图分别介绍。
(1)对于2色位图,用1位就可以表示该像素的颜色(一般0表示黑,1表示白),所以一个字节可以表示8个像素。
(2)对于16色位图,用4位可以表示一个像素的颜色,所以一个字节可以表示2个像素。
(3)对于256色位图,一个字节刚好可以表示1个像素。

(4)对于高彩色位图,2个字节表示1个像素,表示方式有565(RGB),4444(RGBA)555(RGB,最高一位保留),对于存储来说需要适当的移位操作,5位表示8位可以表示的颜色,这样就会有失真,但是这样的失真对于人的视觉来说,影响非常小,所以在游戏,应用软件,以及图形处理等领域用的比较多,虽然用起来比较复杂,这样就相当于取近似值,26/256(2的8次方)(R)是大约百分之10的红,同样表示大约百分之10的红还可以用3/32(2的5次方)(R)。

(5)对于真彩色图,三个字节才能表示1个像素。
要注意两点:
1.每一行的字节数必须是4的整倍数,如果不是,则需要补齐。这在前面介绍biSizeImage时已经提到了。
2.一般来说,.BMP文件的数据从下到上,从左到右的。也就是说,从文件中最先读到的是图象最下面一行的左边第一个像素,然后是左边第二个像素…接下来是倒数第二行左边第一个像素,左边第二个像素…依次类推,最后得到的是最上面一行的最右一个像素。

3. 位图每个像素占用的位数和位图的色彩数不一样,不要搞混。


目录
相关文章
|
1月前
|
存储 Java
Bitmap位图(Java实现)
本文介绍了使用Java实现一个简单的Bitmap,通过自定义byte数组存储数据,提供put和exist方法分别用于插入数据和查询数据是否存在。Bitmap利用位操作高效地管理大量布尔值,适用于空间优化的场景。代码中详细解释了位图的核心原理、方法实现及边界检查。后续计划探讨位图在海量数据去重中的应用及JDK BitSet源码分析。
72 7
|
3月前
|
存储 监控
Bitmap
【10月更文挑战第7天】
36 1
|
6月前
|
存储 算法 数据挖掘
【C++】位图
【C++】位图
54 1
|
7月前
|
开发框架 .NET C#
详细解读Bitmap的优化
详细解读Bitmap的优化
42 0
|
7月前
|
C++
位图和布隆过滤器:位图
位图和布隆过滤器:位图
|
7月前
|
存储 算法 Java
BitMap介绍
BitMap介绍
37 0
|
7月前
|
API Android开发
55. 【Android教程】位图:Bitmap
55. 【Android教程】位图:Bitmap
80 0
使用Bitmap.createBitmap遇到的问题
使用Bitmap.createBitmap遇到的问题
464 0
|
Java Android开发
Bitmap详解
Bitmap的分析与使用 Bitmap的创建 创建Bitmap的时候,Java不提供new Bitmap()的形式去创建,而是通过BitmapFactory中的静态方法去创建,如:BitmapFactory.
2109 0