FutureTask 源码解析

简介:

版权声明:本文为本作者原创文章,转载请注明出处。感谢 码梦为生| 刘锟洋 的投稿

站在使用者的角度,future是一个经常在多线程环境下使用的Runnable,使用它的好处有两个:
1. 线程执行结果带有返回值
2. 提供了一个线程超时的功能,超过超时时间抛出异常后返回。

那,怎么实现future这种超时控制呢?来看看代码:

F1

FutureTask的实现只是依赖了一个内部类Sync实现的,Sync是AQS (AbstractQueuedSynchronizer)的子类,这个类承担了所有future的功能,AbstractQueuedSynchronizer的作者是大名鼎鼎的并发编程大师Doug Lea,它的作用远远不止实现一个Future这么简单,后面在说。

下面,我们从一个future提交到线程池开始,直到future超时或者执行结束来看看future都做了些什么。怎么做的。
首先,向线程池ThreadPoolExecutor提交一个future:

F2

ThreadPoolExecutor将提交的任务用FutureTask包装一下:

F3

F4

然后尝试将包装后的Future用Thread类包装下后启动,

红色标记的地方表示,当当前线程池的大小小于corePoolSize时,将任务提交,否则将该任务加入到workQueue中去,如果workQueue装满了,则尝试在线程数小于MaxPoolSize的条件下提交该任务。

F5

顺便说明下,我们使用线程池时,常常看到有关有界队列,无界队列作为工作队列的字眼:使用无界队列时,线程池的大小永远不大于corePoolSize,使用有界队列时的maxPoolSize才有效,原因就在这里,如果是
无界队列,红框中的add永远为true 下方的addIfUnderMaximumPoolSize怎么也走不到了,也就不会有线程数量大于MaxPoolSize的情况。

言归正传,看看addIfUnderCorePoolSize 中做了什么事:
new了一个Thread,将我们提交的任务包装下后就直接启动了

F6

我们知道,线程的start方法会调用我们runnable接口的run方法,因此不难猜测FutureTask也是实现了Runnable接口的

F7

F8

FutureTask的run()方法中是这么写:

F9

innerRun方法先使用原子方式更改了一下自己的一个标志位state(用于标示任务的执行情况)
然后红色框的方法 实现回调函数call的调用,并且将返回值作为参数传递下去,放置在一个叫做result的泛型变量中,
然后future只管等待一段时间后去拿result这个变量的值就可以了。 至于怎么实现的“等待一段时间再去拿” 后面马上说明。

F10

innerSet在经过一系列的状态判断后,最终将V这个call方法返回的值赋值给了result

F11

说到这里,我们知道,future是通过将call方法的返回值放在一个叫做result的变量中,经过一段时间的等待后再去拿出来返回就可以了。

怎么实现这个 “等一段时间”呢?

要从Sync的父类AbstractQueuedSynchronizer这个类说起:

我们知道AbstractQueuedSynchronizer 后者的中文名字叫做 同步器,顾名思义,是用来控制资源占用的一种方式。对于FutureTask来说,“资源”就是result,线程执行的结果。思路就是通过控制对result这个资源的访问来决定是否需要马上去取得result这个结果,当超时时间未到,或者线程未执行结束时,是不能去取result的。当线程正常执行结束后,一系列的标志位会被修改,并告诉等待future执行结果的各个线程,可以来获取result了。

这里会涉及到 独占锁和共享锁的概念。

独占锁:同一时间只有一个线程获取锁。再有线程尝试加锁,将失败。 典型例子 reentrantLock
共享锁:同一时间可以有多个线程获取锁。 典型例子,本例中的FutureTask

为什么说他们?因为Sync本质上就是想完成一个共享锁的功能,所以Sync继承了AbstractQueuedSynchronizer 所以Sync的方法使用的是AbstractQueuedSynchronizer的共享锁的API

首先,我们明白,future结束有两种状态:
1. 线程正常执行完毕,通知等待结果的主线程对应于future.get()方法。
2. 线程还未执行完毕,等待结果的主线程已经等不到了(超时),抛出一个TimeOutException后不再等待。对应于future.get(long timeout, TimeUnit unit)

下面我们依次看看对于这两种状态,我们是怎么处理的:
从上图中可以得知,线程在执行完毕后会将执行的结果放到result中, 红色框中同时提到了releaseShared 方法,我们从这里进入AbstractQueuedSynchronizer

F12

当result已经被赋值,或者FutureTask为cancel状态时,FutureTask会尝试去释放共享锁(可以同时有多个线程调用future.get() 方法,也就是会有多个线程在等待future执行结果,而furue在执行完毕后会依次唤醒各个线程)
如果尝试成功,则开始真正的释放锁,这里是AbstractQueuedSynchronizer 比较精妙的地方, “尝试”动作都定义为抽象方法,交个各个子类去定义“尝试成功的含义” 而真正的释放则自己实现,这种复杂规则交个子类,流程交给自己的思路很值得借鉴。

F13

再看FutureTask的 “尝试释放”的规则:

没啥好说,怎么尝试都成功

F14

接着AbstractQueuedSynchronizer 开始了真正的释放唤醒工作:


01 private void doReleaseShared() {
02  
03 /*
04 * Ensure that a release propagates, even if there are other
05 * in-progress acquires/releases. This proceeds in the usual
06 * way of trying to unparkSuccessor of head if it needs
07 * signal. But if it does not, status is set to PROPAGATE to
08 * ensure that upon release, propagation continues.
09 * Additionally, we must loop in case a new node is added
10 * while we are doing this. Also, unlike other uses of
11 * unparkSuccessor, we need to know if CAS to reset status
12 * fails, if so rechecking.
13 */
14 for (;;) {
15      Node h = head;//把头元素取出来,保持头元素的引用,防止head被更改
16      if (h != null && h != tail) {
17         int ws = h.waitStatus;
18         if (ws == Node.SIGNAL) {//如果状态位为:需要一个信号去唤醒 注释原话:/** waitStatus value to                  indicate successor's thread needs unparking */
19         if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) //修改状态位
20              continue; // loop to recheck cases
21         unparkSuccessor(h);//如果修改成功,则通过头元素找到一个线程,并且唤醒它(唤醒动作是通过JNI方法去调用的)
22         }
23        else if (ws == 0 &&
24              !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
25        continue; // loop on failed CAS
26      }
27      if (h == head) // loop if head changed
28          break;
29    }
30 }

循环遍历后,知道已经没有结点需要唤醒则返回,依次return后,future的run方法执行完毕。

以上是针对future线程的,我们知道,FutureTask已经将执行结果放在了result中,并且按等的先后顺序依唤醒了等待队列上的线程。
那,猜测future.get方法就不难了,对于带超时的get方法:最大的可能性就是不断的检查future的一个状态位,看它是否执行完毕,执行完则获取结果返回,否则,再阻塞自己一段时间。
对于不待超时的,就上来就先尝试获取结果,拿不到就阻塞自己,直到上述的innerSet方法唤醒它。
究竟是不是这样呢?一起来看看:

因为innerGet(long nanosTimeout) 和innerGet()流程大致相同,所以我们重点讲解innerGet(long nanosTimeout) ,在唯一一个有区别的地方说明下即可。

如下图所示,对于innerGet(long nanosTimeout) 方法,FutureTask采用的方法是直接加锁或者每隔一段时间尝试加锁,如果成功,则返回true,则如上图所示,直接返回result,主线程拿到执行结果。
否则,抛出超时异常。

对于tryAcquireShared 方法,比较简单,直接看future是否执行完毕

如果没有结束,则进入doAcquireSharedNanos方法:


01 private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
02 throws InterruptedException {
03  
04     long lastTime = System.nanoTime();
05     final Node node = addWaiter(Node.SHARED);//在队列尾部增加一个结点,我的理解是,用来标明这个队列是共享者队列还是独占队列
06     try {
07         for (;;) {
08             final Node p = node.predecessor();//拿出刚才新增结点的前一个结点:实际有效的队尾结点。
09             if (p == head) {
10                 int r = tryAcquireShared(arg);//尝试获取锁。
11                 if (r >= 0) {//
12                     setHeadAndPropagate(node, r);//返回值大于1 对于FutureTask代表任务已经被cancel了,则更改队列头部结点。
13                 p.next = null; // help GC 将p结点脱离队列,帮助GC
14             return true;//返回true后 上述中可以知道当前线成会抛出超时异常 确定下会不会唤醒其他节点?
15         }
16         }
17         if (nanosTimeout <= 0) { //如果设置的超时时间小于等于0 则取消获取锁 cancelAcquire(node); return             false; } if (nanosTimeout > spinForTimeoutThreshold && //等待的时间必须大于一个自旋锁的周期时间
18             shouldParkAfterFailedAcquire(p, node)) // 遍历队列,找到需要沉睡的第一个节点
19             LockSupport.parkNanos(this, nanosTimeout); // 调用JNI方法,沉睡当前线程
20             long now = System.nanoTime();
21             nanosTimeout -= now - lastTime; // 更新等待时间 循环遍历
22             lastTime = now;
23             if (Thread.interrupted())
24                 break;
25         }
26     } catch (RuntimeException ex) {
27         cancelAcquire(node);
28         throw ex;
29     }
30         // Arrive here only if interrupted
31         cancelAcquire(node);
32         throw new InterruptedException();
33     }

这样通过AQS的协作,所有调用future.get(long timeout, TimeUnit unit)的线程都会按顺序等待,直到线成执行完被唤醒或者超时时间到 主动抛出异常。

总结

至此为止FutureTask的解析已经基本结束了,可以看到。它依靠AQS的共享锁实现了对线程执行结果的访问控制。和我们通常意义上的访问控制(并发访问某个资源,获取失败时,沉睡自己等待唤醒或者超时后返回)基本是一致的,不外乎维护了一个等待资源的列表。将等待资源的线程通过链表的方式串了起来。

当然AQS的功能远不仅如此,它还提供了一套独占锁的API,帮助使用者实现独占锁的功能。
最常用的Reentrantlock就是使用这套API做的。
有机会的话再和大家分享下它的实现。

版权声明:本文为本作者原创文章,转载请注明出处。感谢 码梦为生| 刘锟洋 的投稿 

目录
相关文章
|
7月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
657 29
|
7月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
187 4
|
7月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
7月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
7月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
7月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
8月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
1372 0
|
11月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
269 2
|
10月前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是"将对象的创建与使用分离”。这样可以降低系统的耦合度,使用者不需要关注对象的创建细节。创建型模式分为5种:单例模式、工厂方法模式抽象工厂式、原型模式、建造者模式。
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
|
10月前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析

热门文章

最新文章

推荐镜像

更多
  • DNS