缓存淘汰算法系列之1——LRU类

简介:

缓存淘汰算法系列之1——LRU类


1. LRU
1.1. 原理

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

1.2. 实现

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下:

1. 新数据插入到链表头部;

2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;

3. 当链表满的时候,将链表尾部的数据丢弃。

1.3. 分析

【命中率】

当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。

【复杂度】

实现简单。

【代价】

命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

2. LRU-K(描述有误,请勿参考)

2.1. 原理

LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。

2.2. 实现

相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:

1. 数据第一次被访问,加入到访问历史列表;

2. 如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;

3. 当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;

4. 缓存数据队列中被再次访问后,重新排序;

5. 需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。

LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。

2.3. 分析

【命中率】

LRU-K降低了“缓存污染”带来的问题,命中率比LRU要高。

【复杂度】

LRU-K队列是一个优先级队列,算法复杂度和代价比较高。

【代价】

由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多;当数据量很大的时候,内存消耗会比较可观。

LRU-K需要基于时间进行排序(可以需要淘汰时再排序,也可以即时排序),CPU消耗比LRU要高。

3. Two queues(2Q)

3.1. 原理

Two queues(以下使用2Q代替)算法类似于LRU-2,不同点在于2Q将LRU-2算法中的访问历史队列(注意这不是缓存数据的)改为一个FIFO缓存队列,即:2Q算法有两个缓存队列,一个是FIFO队列,一个是LRU队列

3.2. 实现

当数据第一次访问时,2Q算法将数据缓存在FIFO队列里面,当数据第二次被访问时,则将数据从FIFO队列移到LRU队列里面,两个队列各自按照自己的方法淘汰数据。详细实现如下:

1. 新访问的数据插入到FIFO队列;

2. 如果数据在FIFO队列中一直没有被再次访问,则最终按照FIFO规则淘汰;

3. 如果数据在FIFO队列中被再次访问,则将数据移到LRU队列头部;

4. 如果数据在LRU队列再次被访问,则将数据移到LRU队列头部;

5. LRU队列淘汰末尾的数据。

注:上图中FIFO队列比LRU队列短,但并不代表这是算法要求,实际应用中两者比例没有硬性规定。

3.3. 分析

【命中率】

2Q算法的命中率要高于LRU。

【复杂度】

需要两个队列,但两个队列本身都比较简单。

【代价】

FIFO和LRU的代价之和。

2Q算法和LRU-2算法命中率类似,内存消耗也比较接近,但对于最后缓存的数据来说,2Q会减少一次从原始存储读取数据或者计算数据的操作。

4. Multi Queue(MQ)

4.1. 原理

MQ算法根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级,其核心思想是:优先缓存访问次数多的数据

4.2. 实现

MQ算法将缓存划分为多个LRU队列,每个队列对应不同的访问优先级。访问优先级是根据访问次数计算出来的,例如

详细的算法结构图如下,Q0,Q1....Qk代表不同的优先级队列,Q-history代表从缓存中淘汰数据,但记录了数据的索引和引用次数的队列:

如上图,算法详细描述如下:

1. 新插入的数据放入Q0;

2. 每个队列按照LRU管理数据;

3. 当数据的访问次数达到一定次数,需要提升优先级时,将数据从当前队列删除,加入到高一级队列的头部;

4. 为了防止高优先级数据永远不被淘汰,当数据在指定的时间里访问没有被访问时,需要降低优先级,将数据从当前队列删除,加入到低一级的队列头部;

5. 需要淘汰数据时,从最低一级队列开始按照LRU淘汰;每个队列淘汰数据时,将数据从缓存中删除,将数据索引加入Q-history头部;

6. 如果数据在Q-history中被重新访问,则重新计算其优先级,移到目标队列的头部;

7. Q-history按照LRU淘汰数据的索引。

4.3. 分析

【命中率】

MQ降低了“缓存污染”带来的问题,命中率比LRU要高。

【复杂度】

MQ需要维护多个队列,且需要维护每个数据的访问时间,复杂度比LRU高。

【代价】

MQ需要记录每个数据的访问时间,需要定时扫描所有队列,代价比LRU要高。

注:虽然MQ的队列看起来数量比较多,但由于所有队列之和受限于缓存容量的大小,因此这里多个队列长度之和和一个LRU队列是一样的,因此队列扫描性能也相近。

5. LRU类算法对比

由于不同的访问模型导致命中率变化较大,此处对比仅基于理论定性分析,不做定量分析。

对比点

对比

命中率

LRU-2 > MQ(2) > 2Q > LRU

复杂度

LRU-2 > MQ(2) > 2Q > LRU

代价

LRU-2  > MQ(2) > 2Q > LRU

实际应用中需要根据业务的需求和对数据的访问情况进行选择,并不是命中率越高越好。例如:虽然LRU看起来命中率会低一些,且存在”缓存污染“的问题,但由于其简单和代价小,实际应用中反而应用更多。

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
27天前
|
缓存 算法 数据挖掘
深入理解缓存更新策略:从LRU到LFU
【10月更文挑战第7天】 在本文中,我们将探讨计算机系统中缓存机制的核心——缓存更新策略。缓存是提高数据检索速度的关键技术之一,无论是在硬件还是软件层面都扮演着重要角色。我们会详细介绍最常用的两种缓存算法:最近最少使用(LRU)和最少使用频率(LFU),并讨论它们的优缺点及适用场景。通过对比分析,旨在帮助读者更好地理解如何选择和实现适合自己需求的缓存策略,从而优化系统性能。
42 3
|
7天前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
21天前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
31 4
|
30天前
|
缓存 分布式计算 NoSQL
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
60 2
|
3月前
|
搜索推荐 算法 Java
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
该博客文章通过UML类图和Java源码示例,展示了如何使用适配器模式将QuickSort类和BinarySearch类的排序和查找功能适配到DataOperation接口中,实现算法的解耦和复用。
31 1
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
|
3月前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
171 1
|
3月前
|
缓存 程序员
封装一个给 .NET Framework 用的内存缓存帮助类
封装一个给 .NET Framework 用的内存缓存帮助类
|
3月前
|
数据采集 算法 数据可视化
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类
本文介绍了一个基于K-Means聚类算法的NBA球员数据分析项目,该项目通过采集和分析球员的得分、篮板、助攻等统计数据,使用轮廓系数法和拐点法确定最优聚类数,将球员分为不同群组,并提供了一个可视化界面以便直观比较不同群组的球员表现。
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类
|
4月前
|
缓存 Python
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
|
4月前
创建KNN类
【7月更文挑战第22天】创建KNN类。
31 8