缓存淘汰算法系列之2——LFU类

简介:

1. LFU类

1.1. LFU

1.1.1. 原理

LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。

1.1.2. 实现

LFU的每个数据块都有一个引用计数,所有数据块按照引用计数排序,具有相同引用计数的数据块则按照时间排序。

具体实现如下:

1. 新加入数据插入到队列尾部(因为引用计数为1);

2. 队列中的数据被访问后,引用计数增加,队列重新排序;

3. 当需要淘汰数据时,将已经排序的列表最后的数据块删除。

1.1.3. 分析

l 命中率

一般情况下,LFU效率要优于LRU,且能够避免周期性或者偶发性的操作导致缓存命中率下降的问题。但LFU需要记录数据的历史访问记录,一旦数据访问模式改变,LFU需要更长时间来适用新的访问模式,即:LFU存在历史数据影响将来数据的“缓存污染”效用。

l 复杂度

需要维护一个队列记录所有数据的访问记录,每个数据都需要维护引用计数。

l 代价

需要记录所有数据的访问记录,内存消耗较高;需要基于引用计数排序,性能消耗较高。

1.2. LFU*

1.2.1. 原理

基于LFU的改进算法,其核心思想是“只淘汰访问过一次的数据”。

1.2.2. 实现

LFU*数据缓存实现和LFU一样,不同的地方在于淘汰数据时,LFU*只淘汰引用计数为1的数据,且如果所有引用计数为1的数据大小之和都没有新加入的数据那么大,则不淘汰数据,新的数据也不缓存

1.2.3. 分析

l 命中率

和LFU类似,但由于其不淘汰引用计数大于1的数据,则一旦访问模式改变,LFU*无法缓存新的数据,因此这个算法的应用场景比较有限。

l 复杂度

需要维护一个队列,记录引用计数为1的数据。

l 代价

相比LFU要低很多,不需要维护所有数据的历史访问记录,只需要维护引用次数为1的数据,也不需要排序。

1.3. LFU-Aging

1.3.1. 原理

基于LFU的改进算法,其核心思想是“除了访问次数外,还要考虑访问时间”。这样做的主要原因是解决LFU缓存污染的问题。

1.3.2. 实现

虽然LFU-Aging考虑时间因素,但其算法并不直接记录数据的访问时间,而是通过平均引用计数来标识时间。

LFU-Aging在LFU的基础上,增加了一个最大平均引用计数。当当前缓存中的数据“引用计数平均值”达到或者超过“最大平均引用计数”时,则将所有数据的引用计数都减少。减少的方法有多种,可以直接减为原来的一半,也可以减去固定的值等。

1.3.3. 分析

l 命中率

LFU-Aging的效率和LFU类似,当访问模式改变时,LFU-Aging能够更快的适用新的数据访问模式,效率要高。

l 复杂度

在LFU的基础上增加平均引用次数判断和处理。

l 代价

和LFU类似,当平均引用次数超过指定阈值(Aging)后,需要遍历访问列表。

1.4. LFU*-Aging

1.4.1. 原理

LFU*和LFU-Aging的合成体。

1.4.2. 实现

略。

1.4.3. 分析

l 命中率

和LFU-Aging类似。

l 复杂度

比LFU-Aging简单一些,不需要基于引用计数排序。

l 代价

比LFU-Aging少一些,不需要基于引用计数排序。


1.5. Window-LFU

1.5.1. 原理

Windows-LFU是LFU的一个改进版,差别在于Window-LFU并不记录所有数据的访问历史,而只是记录过去一段时间内的访问历史,这就是Window的由来,基于这个原因,传统的LFU又被称为“Perfect-LFU”。

1.5.2. 实现

与LFU的实现基本相同,差别在于不需要记录所有数据的历史访问数据,而只记录过去一段时间内的访问历史。具体实现如下:

1)记录了过去W个访问记录;

2)需要淘汰时,将W个访问记录按照LFU规则排序淘汰

举例如下:

假设历史访问记录长度设为9,缓存大小为3,图中不同颜色代表针对不同数据块的访问,同一颜色代表针对同一数据的多次访问。

样例1:黄色访问3次,蓝色和橘色都是两次,橘色更新,因此缓存黄色、橘色、蓝色三个数据块

样例2:绿色访问3次,蓝色两次,暗红两次,蓝色更新,因此缓存绿色、蓝色、暗红三个数据块

1.5.3. 分析

l 命中率

Window-LFU的命中率和LFU类似,但Window-LFU会根据数据的访问模式而变化,能够更快的适应新的数据访问模式,”缓存污染“问题不严重。

l 复杂度

需要维护一个队列,记录数据的访问流历史;需要排序。

l 代价

Window-LFU只记录一部分的访问历史记录,不需要记录所有的数据访问历史,因此内存消耗和排序消耗都比LFU要低。

1.6. LFU类算法对比

由于不同的访问模型导致命中率变化较大,此处对比仅基于理论定性分析,不做定量分析。

对比点

对比

命中率

Window-LFU/LFU-Aging > LFU*-Aging > LFU > LFU*

复杂度

LFU-Aging > LFU>  LFU*-Aging  >Window-LFU > LFU*

代价

LFU-Aging > LFU > Window-LFU > LFU*-Aging  > LFU*

相关文章
|
3月前
|
机器学习/深度学习 算法 安全
深度长文I 深度合成服务类-算法备案该怎么做?
本文详解“深度合成服务类”算法及其备案要求,涵盖定义、类型、备案流程等内容,助你全面理解合规要点。
|
12月前
|
缓存 算法 数据挖掘
深入理解缓存更新策略:从LRU到LFU
【10月更文挑战第7天】 在本文中,我们将探讨计算机系统中缓存机制的核心——缓存更新策略。缓存是提高数据检索速度的关键技术之一,无论是在硬件还是软件层面都扮演着重要角色。我们会详细介绍最常用的两种缓存算法:最近最少使用(LRU)和最少使用频率(LFU),并讨论它们的优缺点及适用场景。通过对比分析,旨在帮助读者更好地理解如何选择和实现适合自己需求的缓存策略,从而优化系统性能。
362 3
|
11月前
|
存储 缓存 算法
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
|
12月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
266 4
|
缓存 分布式计算 NoSQL
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
223 2
|
搜索推荐 算法 Java
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
该博客文章通过UML类图和Java源码示例,展示了如何使用适配器模式将QuickSort类和BinarySearch类的排序和查找功能适配到DataOperation接口中,实现算法的解耦和复用。
180 1
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
675 1
|
缓存 程序员
封装一个给 .NET Framework 用的内存缓存帮助类
封装一个给 .NET Framework 用的内存缓存帮助类
139 1
创建KNN类
【7月更文挑战第22天】创建KNN类。
94 8
|
数据采集 算法 数据可视化
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类
本文介绍了一个基于K-Means聚类算法的NBA球员数据分析项目,该项目通过采集和分析球员的得分、篮板、助攻等统计数据,使用轮廓系数法和拐点法确定最优聚类数,将球员分为不同群组,并提供了一个可视化界面以便直观比较不同群组的球员表现。
233 0
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类

热门文章

最新文章