机器学习-梯度下降算法-特征缩放和学习速率选取

简介: 1. 特征缩放实际当我们在计算线性回归模型的时候,会发现特征变量x,不同维度之间的取值范围差异很大。这就造成了我们在使用梯度下降算法的时候,由于维度之间的差异使得Jθ的值收敛的很慢。

1. 特征缩放

实际当我们在计算线性回归模型的时候,会发现特征变量x,不同维度之间的取值范围差异很大。这就造成了我们在使用梯度下降算法的时候,由于维度之间的差异使得Jθ的值收敛的很慢。

我们还是以房价预测为例子,我们使用2个特征。房子的尺寸(1~2000),房间的数量(1-5)。以这两个参数为横纵坐标,绘制代价函数的等高线图能看出整个图显得很扁,假如红色的轨迹即为函数收敛的过程,会发现此时函数收敛的非常慢。

为了解决这个问题,我们采用特征缩放,所谓的特征缩放就是把所有的特征都缩放到一个相近的取值范围内。比如-1~1,或者-0.5~2,或者-2~05 等等,只要不超过-3 ~ 3这个范围,基本上都能够满足梯度下降算法

最简单的方法采用下面的公式进行计算

  1. Xn表示第n个特征,也就是特征变量X的第n维
  2. Un表示特征的平均值,也就是所有特征向量集第n个特征的平均值
  3. Sn表示标准差,方差算术平方根
实际上,当我们在运用线性回归时,不一定非要直接用给出的 x1, x2, x3 ... xn 作为特征,有时候可以自己创造新的特征。 比如训练集中只给了房子长度和宽度两个特征,但是我们可以用长度X宽度得到面积这个新的特征。 
有时,通过定义新的特征,可以得到一个更好的模型。

2. 学习速率

梯度下降算法中,最合适即每次跟着参数θ变化的时候,J(θ)的值都应该下降 到目前为止,我们还没有介绍如何选择学历速率α,梯度下降算法每次迭代,都会受到学习速率α的影响

  1. 如果α较小,则达到收敛所需要迭代的次数就会非常高;
  2. 如果α较大,则每次迭代可能不会减小代价函数的结果,甚至会超过局部最小值导致无法收敛。如下图所示情况

观察下图,可以发现这2种情况下代价函数 J(θ)的迭代都不是正确的

  1. 第一个图,曲线在上升,明显J(θ)的值变得越来越大,说明应该选择较小的α
  2. 第二个图,J(θ)的曲线,先下降,然后上升,接着又下降,然后又上升,如此往复。通常解决这个问题,还是选取较小的α

根据经验,可以从以下几个数值开始试验α的值,0.001 ,0.003, 0.01, 0.03, 0.1, 0.3, 1, …

α初始值位0.001, 不符合预期乘以3倍用0.003代替,不符合预期再用0.01替代,如此循环直至找到最合适的α

然后对于这些不同的 α 值,绘制 J(θ)随迭代步数变化的曲线,然后选择看上去使得 J(θ)快速下降的一个 α 值。

所以,在为梯度下降算法选择合适的学习速率 α 时,可以大致按3的倍数再按10的倍数来选取一系列α值,直到我们找到一个值它不能再小了,同时找到另一个值,它不能再大了。其中最大的那个 α 值,或者一个比最大值略小一些的α 值 就是我们期望的最终α 值

目录
相关文章
|
23天前
|
机器学习/深度学习 传感器 数据采集
【23年新算法】基于鱼鹰算法OOA-Transformer-BiLSTM多特征分类预测附Matlab代码 (多输入单输出)(Matlab代码实现)
【23年新算法】基于鱼鹰算法OOA-Transformer-BiLSTM多特征分类预测附Matlab代码 (多输入单输出)(Matlab代码实现)
115 0
|
4月前
|
机器学习/深度学习 存储 监控
上网管理监控软件的 Go 语言流量特征识别算法实现与优化
本文探讨基于Go语言的流量特征识别算法,用于上网管理监控软件。核心内容涵盖AC自动机算法原理、实现及优化,通过路径压缩、哈希表存储和节点合并策略提升性能。实验表明,优化后算法内存占用降低30%,匹配速度提升20%。在1000Mbps流量下,CPU利用率低于10%,内存占用约50MB,检测准确率达99.8%。未来可进一步优化高速网络处理能力和融合机器学习技术。
136 10
|
4月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
5月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
205 6
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
441 14
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
401 1
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
774 0
|
机器学习/深度学习 数据采集 监控
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
1592 0

热门文章

最新文章