Spark-分布式集群运行

简介: 1.简介这篇文章主要是简单的介绍一下Spark应用如何在集群上运行, 更进一步的理解Spark所涉及到的相关主件目前Apache Spark支持三种分布式部署方式,分别是standalone、spark on mesos和 spark on YARN2.

1.简介

这篇文章主要是简单的介绍一下Spark应用如何在集群上运行, 更进一步的理解Spark所涉及到的相关主件

目前Apache Spark支持三种分布式部署方式,分别是standalone、spark on mesos和 spark on YARN

2.架构

Spark应用在集群上是独立运行的进程, 通过主程序(main program)的SparkContext进行协调. 一般我们成Spark的主程序为driver程序(driver program)

特别的, 在集群上运行Spark, SparkContext对象支持和多种不同类型的集群管理器(Cluster manager)进行通信. 包括Spark自己的standalone集群管理器, Mesos还有YARN. SparkContext和Cluster manager连接之后, Cluster manager会在集群的worker节点上启动executor进程(真正进行数据处理, 计算和存储), 接下来把应用程序的代码(JAR包或Python文件)发送到executor进程, 最后SparkContext在executor进程上调度task执行

上诉的流程, 简单用几个步骤进行描述

  1. SparkContext和Cluster manager通信
  2. Cluster manager在集群的worker节点启动executor进程
  3. Cluster manager把Spark应用代码发送给executor进程
  4. SparkContext推送task到executor上执行

从上图可以看出

  1. SparkContext负责驱动整个Spark应用的执行
  2. Cluster manager负责进行资源分配和任务调度(executros启动)
  3. executor负责执行Spark的task任务

对于这个架构, 有几个我们必须了解

  1. 每个应用的executor进程是相互隔离的, executor进程贯穿于整个应用的生命周期, 同时用多线程执行task. executor进程隔离有什么好处呢? 第一点对于driver调度来说, 每个driver只管负责调度自己的task即可. 第二点对于executor执行来说不同的应用的task运行在不同JVM. 相反, 进程隔离意味着不同Spark应用程序之间的数据无法共享, 除了持久化存储的那些数据
  2. 对于Spark来说并不关心Cluster manager, 只要能够启动executor进程同时也能够互相通信就可以. 对于Mesos/YARN来说非常容易运行其他运用程序, 包括Spark
  3. Spark的整个生命周期期间, driver程序需要监听并且接收外部请求. 因此必须保证driver程序网络可用
  4. 由于driver程序要调度task到worker节点的executor进程运行, 因此driver程序最好能够和worker节点在同一个集群内执行. 如果想发送一个请求到远程集群, 最好通过发送RPC请求来提交相关操作

3.Clsuter manager

目前有三种类型的Cluster manager支持Spark

standalone

Apache Mesos

Hadoop YARN

4.名词解释

Spark应用程序可以通过 spark-submit进行提交

每个driver程序都有一个web UI, 端口4040. 前端可以展示tasks, executors和存储使用情况.

Term              Meaning
----------------------------------------------------------------------------------
Application       用户开发的Spark应用程序, 包括driver程序和集群的executors进程
----------------------------------------------------------------------------------
Application jar   包含用户Spark应用程序的jar包, 有些时候用户创建一个jar包, 包含应用
                  所有的依赖项. 但是用户的jar包不应该包括Hadoop或者Spark相关的库
----------------------------------------------------------------------------------
Driver program    应用程序执行main函数的进程, 同时生成SparkContext
----------------------------------------------------------------------------------
Cluster manager   集群服务用于分配资源
----------------------------------------------------------------------------------
Deploy mode       driver程序运行的区别. "cluster"模式, driver程序运行在集群的任意wroker
                  节点. "client"模式, driver程序运行在本地
----------------------------------------------------------------------------------
Worker node       集群的任何一个可以执行应用的节点
----------------------------------------------------------------------------------
Executor          每个应用在worker节点上启动的一个进程, 执行task任务同时把数据放在
                  内存或者磁盘. 每个应用都有自己的executor进程
----------------------------------------------------------------------------------
Task              executor执行的一个单元
----------------------------------------------------------------------------------
Job               多个并行计算task组成一个Job
----------------------------------------------------------------------------------
Stage             每个job被分割成多个不同task集合, 每个task集合称为stage
                  例如map和reduce是Mapeduce的一个stage
目录
相关文章
|
27天前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
136 2
|
6月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
阿里云PolarDB云原生数据库在TPC-C基准测试中以20.55亿tpmC的成绩刷新世界纪录,展现卓越性能与性价比。其轻量版满足国产化需求,兼具高性能与低成本,适用于多种场景,推动数据库技术革新与发展。
|
5月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
|
6月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
454 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
6月前
|
人工智能 分布式计算 调度
打破资源边界、告别资源浪费:ACK One 多集群Spark和AI作业调度
ACK One多集群Spark作业调度,可以帮助您在不影响集群中正在运行的在线业务的前提下,打破资源边界,根据各集群实际剩余资源来进行调度,最大化您多集群中闲置资源的利用率。
|
8月前
|
存储 分布式计算 调度
Spark Master HA 主从切换过程不会影响到集群已有作业的运行, 为什么?
Spark Master 的高可用性(HA)机制确保主节点故障时,备用主节点能无缝接管集群管理,保障稳定运行。关键在于: 1. **Driver 和 Executor 独立**:任务执行不依赖 Master。 2. **应用状态保持**:备用 Master 通过 ZooKeeper 恢复集群状态。 3. **ZooKeeper 协调**:快速选举新 Master 并同步状态。 4. **容错机制**:任务可在其他 Executor 上重新调度。 这些特性保证了集群在 Master 故障时仍能正常运行。
|
9月前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
10月前
|
存储 分布式计算 负载均衡
分布式计算模型和集群计算模型的区别
【10月更文挑战第18天】分布式计算模型和集群计算模型各有特点和优势,在实际应用中需要根据具体的需求和条件选择合适的计算架构模式,以达到最佳的计算效果和性能。
351 62
|
10月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
10月前
|
存储 监控 大数据
构建高可用性ClickHouse集群:从单节点到分布式
【10月更文挑战第26天】随着业务的不断增长,单一的数据存储解决方案可能无法满足日益增加的数据处理需求。在大数据时代,数据库的性能、可扩展性和稳定性成为企业关注的重点。ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(DBMS),以其卓越的查询性能和高吞吐量而闻名。本文将从我的个人角度出发,分享如何将单节点 ClickHouse 扩展为高可用性的分布式集群,以提升系统的稳定性和可靠性。
981 0

热门文章

最新文章