【Kafka源码】处理请求

简介:

[TOC]


在KafkaServer中的入口在:

apis = new KafkaApis(socketServer.requestChannel, replicaManager, groupCoordinator,
        kafkaController, zkUtils, config.brokerId, config, metadataCache, metrics, authorizer)
requestHandlerPool = new KafkaRequestHandlerPool(config.brokerId, socketServer.requestChannel, apis, config.numIoThreads)

首先根据相关参数,实例化KafkaApis,然后实例化KafkaRequestHandlerPool。下面我们首先看下KafkaRequestHandlerPool。

一、KafkaRequestHandlerPool

class KafkaRequestHandlerPool(val brokerId: Int,
                              val requestChannel: RequestChannel,
                              val apis: KafkaApis,
                              numThreads: Int) extends Logging with KafkaMetricsGroup {

  /* a meter to track the average free capacity of the request handlers */
  private val aggregateIdleMeter = newMeter("RequestHandlerAvgIdlePercent", "percent", TimeUnit.NANOSECONDS)

  this.logIdent = "[Kafka Request Handler on Broker " + brokerId + "], "
  val threads = new Array[Thread](numThreads)
  val runnables = new Array[KafkaRequestHandler](numThreads)
  for(i <- 0 until numThreads) {
    runnables(i) = new KafkaRequestHandler(i, brokerId, aggregateIdleMeter, numThreads, requestChannel, apis)
    threads(i) = Utils.daemonThread("kafka-request-handler-" + i, runnables(i))
    threads(i).start()
  }
//...
}

主要是启动了numThreads个数的线程,然后线程中执行的内容是KafkaRequestHandler。

/**
 * 响应kafka请求的线程
 */
class KafkaRequestHandler(id: Int,
                          brokerId: Int,
                          val aggregateIdleMeter: Meter,
                          val totalHandlerThreads: Int,
                          val requestChannel: RequestChannel,
                          apis: KafkaApis) extends Runnable with Logging {
  this.logIdent = "[Kafka Request Handler " + id + " on Broker " + brokerId + "], "

  def run() {
    while(true) {
      try {
        var req : RequestChannel.Request = null
        while (req == null) {
          // We use a single meter for aggregate idle percentage for the thread pool.
          // Since meter is calculated as total_recorded_value / time_window and
          // time_window is independent of the number of threads, each recorded idle
          // time should be discounted by # threads.
          val startSelectTime = SystemTime.nanoseconds
          req = requestChannel.receiveRequest(300)
          val idleTime = SystemTime.nanoseconds - startSelectTime
          aggregateIdleMeter.mark(idleTime / totalHandlerThreads)
        }

        if(req eq RequestChannel.AllDone) {
          debug("Kafka request handler %d on broker %d received shut down command".format(
            id, brokerId))
          return
        }
        req.requestDequeueTimeMs = SystemTime.milliseconds
        trace("Kafka request handler %d on broker %d handling request %s".format(id, brokerId, req))
        apis.handle(req)//这边是如何处理请求的重点
      } catch {
        case e: Throwable => error("Exception when handling request", e)
      }
    }
  }
    //shutdown。。
}

在run方法中,我们可以看到,主要处理消息的地方是api.handle(req)。下面我们主要看下这块的内容。

二、KafkaApis.handle

直接看代码:

/**
 * Top-level method that handles all requests and multiplexes to the right api
 */
def handle(request: RequestChannel.Request) {
  try {
    trace("Handling request:%s from connection %s;securityProtocol:%s,principal:%s".
    format(request.requestDesc(true), request.connectionId, request.securityProtocol, request.session.principal))
      ApiKeys.forId(request.requestId) match {//根据requestId,调用不同的方法,处理不同的请求
        case ApiKeys.PRODUCE => handleProducerRequest(request)
        case ApiKeys.FETCH => handleFetchRequest(request)
        case ApiKeys.LIST_OFFSETS => handleOffsetRequest(request)
        case ApiKeys.METADATA => handleTopicMetadataRequest(request)
        case ApiKeys.LEADER_AND_ISR => handleLeaderAndIsrRequest(request)
        case ApiKeys.STOP_REPLICA => handleStopReplicaRequest(request)
        case ApiKeys.UPDATE_METADATA_KEY => handleUpdateMetadataRequest(request)
        case ApiKeys.CONTROLLED_SHUTDOWN_KEY => handleControlledShutdownRequest(request)
        case ApiKeys.OFFSET_COMMIT => handleOffsetCommitRequest(request)
        case ApiKeys.OFFSET_FETCH => handleOffsetFetchRequest(request)
        case ApiKeys.GROUP_COORDINATOR => handleGroupCoordinatorRequest(request)
        case ApiKeys.JOIN_GROUP => handleJoinGroupRequest(request)
        case ApiKeys.HEARTBEAT => handleHeartbeatRequest(request)
        case ApiKeys.LEAVE_GROUP => handleLeaveGroupRequest(request)
        case ApiKeys.SYNC_GROUP => handleSyncGroupRequest(request)
        case ApiKeys.DESCRIBE_GROUPS => handleDescribeGroupRequest(request)
        case ApiKeys.LIST_GROUPS => handleListGroupsRequest(request)
        case ApiKeys.SASL_HANDSHAKE => handleSaslHandshakeRequest(request)
        case ApiKeys.API_VERSIONS => handleApiVersionsRequest(request)
        case requestId => throw new KafkaException("Unknown api code " + requestId)
      }
    } catch {
      case e: Throwable =>
        if (request.requestObj != null) {
          request.requestObj.handleError(e, requestChannel, request)
          error("Error when handling request %s".format(request.requestObj), e)
        } else {
          val response = request.body.getErrorResponse(request.header.apiVersion, e)
          val respHeader = new ResponseHeader(request.header.correlationId)

          /* If request doesn't have a default error response, we just close the connection.
             For example, when produce request has acks set to 0 */
          if (response == null)
            requestChannel.closeConnection(request.processor, request)
          else
            requestChannel.sendResponse(new Response(request, new ResponseSend(request.connectionId, respHeader, response)))

          error("Error when handling request %s".format(request.body), e)
     }
  } finally
    request.apiLocalCompleteTimeMs = SystemTime.milliseconds
}

2.1 ApiKeys枚举类

PRODUCE(0, "Produce"),//生产者消息
FETCH(1, "Fetch"),//消费者获取消息
LIST_OFFSETS(2, "Offsets"),//获取偏移量
METADATA(3, "Metadata"),//获取topic源数据
LEADER_AND_ISR(4, "LeaderAndIsr"),
STOP_REPLICA(5, "StopReplica"),//停止副本复制
UPDATE_METADATA_KEY(6, "UpdateMetadata"),//更新源数据
CONTROLLED_SHUTDOWN_KEY(7, "ControlledShutdown"),//controller停止
OFFSET_COMMIT(8, "OffsetCommit"),//提交offset
OFFSET_FETCH(9, "OffsetFetch"),//获取offset
GROUP_COORDINATOR(10, "GroupCoordinator"),//组协调
JOIN_GROUP(11, "JoinGroup"),//加入组
HEARTBEAT(12, "Heartbeat"),//心跳
LEAVE_GROUP(13, "LeaveGroup"),//离开组
SYNC_GROUP(14, "SyncGroup"),//同步组
DESCRIBE_GROUPS(15, "DescribeGroups"),//描述组
LIST_GROUPS(16, "ListGroups"),//列出组
SASL_HANDSHAKE(17, "SaslHandshake"),//加密握手
API_VERSIONS(18, "ApiVersions");//版本

这块比较简单,主要的是Request的数据结构,还有后续的处理方法。下面我们逐步来分析。

三、Request数据结构

所有的请求,最终都会变成这个RequestChannel.Request。所以我们先看下这个Request。

case class Request(processor: Int, connectionId: String, session: Session, private var buffer: ByteBuffer, startTimeMs: Long, securityProtocol: SecurityProtocol) {
    //...
    val requestId = buffer.getShort()

    private val keyToNameAndDeserializerMap: Map[Short, (ByteBuffer) => RequestOrResponse]=
      Map(ApiKeys.FETCH.id -> FetchRequest.readFrom,
        ApiKeys.CONTROLLED_SHUTDOWN_KEY.id -> ControlledShutdownRequest.readFrom
      )

    val requestObj =
      keyToNameAndDeserializerMap.get(requestId).map(readFrom => readFrom(buffer)).orNull

    val header: RequestHeader =
      if (requestObj == null) {
        buffer.rewind
        try RequestHeader.parse(buffer)
        catch {
          case ex: Throwable =>
            throw new InvalidRequestException(s"Error parsing request header. Our best guess of the apiKey is: $requestId", ex)
        }
      } else
        null
    val body: AbstractRequest =
      if (requestObj == null)
        try {
          // For unsupported version of ApiVersionsRequest, create a dummy request to enable an error response to be returned later
          if (header.apiKey == ApiKeys.API_VERSIONS.id && !Protocol.apiVersionSupported(header.apiKey, header.apiVersion))
            new ApiVersionsRequest
          else
            AbstractRequest.getRequest(header.apiKey, header.apiVersion, buffer)
        } catch {
          case ex: Throwable =>
            throw new InvalidRequestException(s"Error getting request for apiKey: ${header.apiKey} and apiVersion: ${header.apiVersion}", ex)
        }
      else
        null

    buffer = null
    private val requestLogger = Logger.getLogger("kafka.request.logger")

    def requestDesc(details: Boolean): String = {
      if (requestObj != null)
        requestObj.describe(details)
      else
        header.toString + " -- " + body.toString
    }
    //...
}

主要有几个部分,

  • 首先是requestId,是一个short类型的值。
  • 然后是header,即消息头,是一个RequestHeader
  • 最后是body,是消息的内容,类型为AbstractRequest

3.1 requestId

这个requestId表示的是api的类型,KafkaApis需要根据这个requestId,来判断调用哪个方法处理消息。

3.2 header

我们看下RequestHeader的结构。

private final short apiKey;
private final short apiVersion;
private final String clientId;
private final int correlationId;

主要是四个变量,apiKey,APIVersion,clientId,correlationId。

3.3 body

消息体,对应的类为AbstractRequest。主要的内容是根据版本号和apiKey来解析出消息的具体内容。

public static AbstractRequest getRequest(int requestId, int versionId, ByteBuffer buffer) {
    ApiKeys apiKey = ApiKeys.forId(requestId);
    switch (apiKey) {
        case PRODUCE:
            return ProduceRequest.parse(buffer, versionId);
        case FETCH:
            return FetchRequest.parse(buffer, versionId);
        case LIST_OFFSETS:
            return ListOffsetRequest.parse(buffer, versionId);
        case METADATA:
            return MetadataRequest.parse(buffer, versionId);
        case OFFSET_COMMIT:
            return OffsetCommitRequest.parse(buffer, versionId);
        case OFFSET_FETCH:
            return OffsetFetchRequest.parse(buffer, versionId);
        case GROUP_COORDINATOR:
            return GroupCoordinatorRequest.parse(buffer, versionId);
        case JOIN_GROUP:
            return JoinGroupRequest.parse(buffer, versionId);
        case HEARTBEAT:
            return HeartbeatRequest.parse(buffer, versionId);
        case LEAVE_GROUP:
            return LeaveGroupRequest.parse(buffer, versionId);
        case SYNC_GROUP:
            return SyncGroupRequest.parse(buffer, versionId);
        case STOP_REPLICA:
            return StopReplicaRequest.parse(buffer, versionId);
        case CONTROLLED_SHUTDOWN_KEY:
            return ControlledShutdownRequest.parse(buffer, versionId);
        case UPDATE_METADATA_KEY:
            return UpdateMetadataRequest.parse(buffer, versionId);
        case LEADER_AND_ISR:
            return LeaderAndIsrRequest.parse(buffer, versionId);
        case DESCRIBE_GROUPS:
                return DescribeGroupsRequest.parse(buffer, versionId);
        case LIST_GROUPS:
            return ListGroupsRequest.parse(buffer, versionId);
        case SASL_HANDSHAKE:
            return SaslHandshakeRequest.parse(buffer, versionId);
        case API_VERSIONS:
            return ApiVersionsRequest.parse(buffer, versionId);
        default:
            throw new AssertionError(String.format("ApiKey %s is not currently handled in `getRequest`, the " +
                    "code should be updated to do so.", apiKey));
    }
}

这块的请求类型很多,想要了解具体结构的,可以到每个类中具体看。

目录
相关文章
|
8月前
|
消息中间件 分布式计算 Kafka
亿万级别Kafka演进之路:可靠性+事务+消息中间件+源码+日志
Kafka起初是由LinkedIn公司采用Scala语言开发的-一个多分区、多副本且基于ZooKeeper协调的分布式消息系统,现已被捐献给Apache基金会。目前Kafka已经定位为一个分布式流式处理平台,它以高吞吐、可持久化、可水平扩展、支持流数据处理等多种特性而被广泛使用。
|
8月前
|
消息中间件 存储 负载均衡
Kafka【付诸实践 01】生产者发送消息的过程描述及设计+创建生产者并发送消息(同步、异步)+自定义分区器+自定义序列化器+生产者其他属性说明(实例源码粘贴可用)【一篇学会使用Kafka生产者】
【2月更文挑战第21天】Kafka【付诸实践 01】生产者发送消息的过程描述及设计+创建生产者并发送消息(同步、异步)+自定义分区器+自定义序列化器+生产者其他属性说明(实例源码粘贴可用)【一篇学会使用Kafka生产者】
513 4
|
消息中间件 存储 算法
聊聊 Kafka: Consumer 源码解析之 Consumer 如何加入 Consumer Group
聊聊 Kafka: Consumer 源码解析之 Consumer 如何加入 Consumer Group
1094 0
|
8月前
|
消息中间件 存储 Kafka
【深入浅出 RocketMQ原理及实战】「底层源码挖掘系列」透彻剖析贯穿一下RocketMQ和Kafka索引设计原理和方案
【深入浅出 RocketMQ原理及实战】「底层源码挖掘系列」透彻剖析贯穿一下RocketMQ和Kafka索引设计原理和方案
154 1
|
消息中间件 设计模式 Java
聊聊 Kafka: Consumer 源码解析之 Rebalance 机制
聊聊 Kafka: Consumer 源码解析之 Rebalance 机制
562 0
|
8月前
|
消息中间件 网络协议 Kafka
Kafka【付诸实践 02】消费者和消费者群组+创建消费者实例+提交偏移量(自动、手动)+监听分区再平衡+独立的消费者+消费者其他属性说明(实例源码粘贴可用)【一篇学会使用Kafka消费者】
【2月更文挑战第21天】Kafka【付诸实践 02】消费者和消费者群组+创建消费者实例+提交偏移量(自动、手动)+监听分区再平衡+独立的消费者+消费者其他属性说明(实例源码粘贴可用)【一篇学会使用Kafka消费者】
259 3
|
8月前
|
消息中间件 存储 负载均衡
[AIGC ~ coze] Kafka 消费者——从源码角度深入理解
[AIGC ~ coze] Kafka 消费者——从源码角度深入理解
103 0
|
8月前
|
消息中间件 存储 缓存
Kafka【基础知识 02】集群+副本机制+数据请求+物理存储+数据存储设计(图片来源于网络)
【2月更文挑战第20天】Kafka【基础知识 02】集群+副本机制+数据请求+物理存储+数据存储设计(图片来源于网络)
161 1
|
8月前
|
存储 Java 关系型数据库
【Kafka+Flume+Mysql+Spark】实现新闻话题实时统计分析系统(附源码)
【Kafka+Flume+Mysql+Spark】实现新闻话题实时统计分析系统(附源码)
248 1
【Kafka+Flume+Mysql+Spark】实现新闻话题实时统计分析系统(附源码)
|
8月前
|
消息中间件 Java 关系型数据库
【Spring Boot+Kafka+Mysql+HBase】实现分布式优惠券后台应用系统(附源码)
【Spring Boot+Kafka+Mysql+HBase】实现分布式优惠券后台应用系统(附源码)
330 2

热门文章

最新文章