c++windows内核编程笔记day12 硬盘逻辑分区管理、文件管理、内存管理

简介: windows系统磁盘文件存储: 分区格式:NTFS / FAT32 GetSystemDirectory();//获取系统路径 GetWindowsDirectory();//获取windows路径 GetCurrentDirector...

windows系统磁盘文件存储:

分区格式:NTFS / FAT32

GetSystemDirectory();//获取系统路径
GetWindowsDirectory();//获取windows路径
GetCurrentDirectory();//获取当前工作目录
SetCurrentDirectory();//修改当前工作目录
CreateFile/ReadFile/WriteFile/GetFileSize/SetFilePointer
//返回文件大小的低32位
DWORD GetFileSize(  HANDLE hFile,// handle to file
  LPDWORD lpFileSizeHigh  //输出参数:返回文件大小的高32位
  );
//创建文件并写入文本代码示例
HANDLE hf=CreateFile("file.txt",GENERIC_WRITE,FILE_SHARE_READ,NULL,
OPEN_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
char txt[]="hello file to write";
DWORD len=0;//返回实际写入的长度
WriteFile(hf,txt,strlen(txt),&len,NULL);
CloseHandle(hf);
//读取代码示例
HANDLE hf=CreateFile("file.txt",GENERIC_READ,FILE_SHARE_READ,
NULL,OPEN_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
CHAR txt[1000]={0};
DWORD len=0;//实际读到的长度
ReadFile(hf,txt,sizeof(txt),&len,NULL);
printf("读取到的字符串:%s\n",txt);
CloseHandle(hf);


day75 am over!
创建目录:CreateDirectory
移动目录(不能跨分区移动)、移动文件(可以跨分区):
BOOL MoveFile(  LPCTSTR lpExistingFileName,// file name
  LPCTSTR lpNewFileName// new file name
  );
删除空目录:RemoveDirectory
复制文件:CopyFile
删除文件:DeleteFile
//查找文件,返回查找句柄
HANDLE FindFirstFile(  LPCTSTR lpFileName,               // file name
  LPWIN32_FIND_DATA lpFindFileData  //输出参数 data buffer
  );
//查找下一个
BOOL FindNextFile(  HANDLE hFindFile,                // search handle
  LPWIN32_FIND_DATA lpFindFileData // data buffer
  );
//关闭查找句柄
 BOOL FindClose(  HANDLE hFindFile   // file search handle
 );
 //使用示例
  char *path="c:/*.*";
WIN32_FIND_DATA wfd={0};
HANDLE hf=FindFirstFile(path,&wfd);
while(1)
{
if(wfd.dwFileAttributes&FILE_ATTRIBUTE_DIRECTORY)
{
printf("目录:[%s]\n",wfd.cFileName);
}
else
{
printf("文件:%s\n",wfd.cFileName);
}
if(FindNextFile(hf,&wfd)==0) break;
}

if(hf) FindClose(hf);

示例代码:

// winlogic.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include<STDIO.H>
#include<WINDOWS.H>
void GetLogical()
{
	UINT logic=GetLogicalDrives();
	printf("%d\n",logic);
}
void GetPath()
{
	char txt[200]={0};
	GetSystemDirectory(txt,sizeof(txt));
	printf("系统路径%s\n",txt);
	memset(txt,0,sizeof(txt));
	GetWindowsDirectory(txt,sizeof(txt));
	printf("windows路径%s\n",txt);
	memset(txt,0,sizeof(txt));
	GetCurrentDirectory(sizeof(txt),txt);
	printf("程序工作路径%s\n",txt);
	SetCurrentDirectory("c:/");
	memset(txt,0,sizeof(txt));
	GetCurrentDirectory(sizeof(txt),txt);
	printf("更改后程序工作路径%s\n",txt);

}
void CreateWrite()
{
	HANDLE hf=CreateFile("file.txt",GENERIC_WRITE,FILE_SHARE_READ,NULL,
		OPEN_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
	char txt[]="hello file to write";
	DWORD len=0;//返回实际写入的长度
	WriteFile(hf,txt,strlen(txt),&len,NULL);
	CloseHandle(hf);
}
void Read()
{
	HANDLE hf=CreateFile("file.txt",GENERIC_READ,FILE_SHARE_READ,
		NULL,OPEN_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
	CHAR txt[1000]={0};
	DWORD len=0;//实际读到的长度
	ReadFile(hf,txt,sizeof(txt),&len,NULL);
	printf("读取到的字符串:%s\n",txt);
	CloseHandle(hf);
}
void CreateDir()
{
	CreateDirectory("abc/",NULL);
}
void Find()
{
	char *path="c:/*.*";
	WIN32_FIND_DATA wfd={0};
	HANDLE hf=FindFirstFile(path,&wfd);
	while(1)
	{
		if(wfd.dwFileAttributes&FILE_ATTRIBUTE_DIRECTORY)
		{
			printf("目录:[%s]\n",wfd.cFileName);
		}
		else
		{
			printf("文件:%s\n",wfd.cFileName);
		}
		if(FindNextFile(hf,&wfd)==0) break;
	}
	if(hf) FindClose(hf);
}
int main(int argc, char* argv[])
{
//	GetLogical();
//	GetPath();
	//CreateWrite();
	//Read();
	//CreateDir();
	Find();
	char c=0;

	printf("按任意键结束!\n");
	scanf("%c",&c);
	return 0;
}

windows内存:

1、区域(针对内存的概念):
一般是64K的倍数。
空闲:没被使用
私有:被预定
映像:存放代码
映射:存放数据
2、物理内存
系统可以使用的实际内存,CPU可以直接访问的内存
3、虚拟内存
将硬盘文件虚拟成内在使用(pagafile.sys),CPU如果要访问虚拟内存数据,必须将虚拟内存数据放到物理内存。
4、内存页(针对地址的概念)
系统管理内存的最小单位。内存页大小为4K,每内存页有自己的权限。
5、页目表。
指针地址(32位):
          31~22        21~12       11~0
页目(1K)     页表(1K)   页内偏移地址(4K)
6、从内存获取数据的过程
1、先在物理内存中找;
2、找不到时在虚拟内在中找;
3、如果在虚拟内存中找到,把物理内存与虚拟内存页数据交换;
4、使用物理内存数据;
5、最后可能物理内存数据与虚拟内存数据交换还原。
7、内存分配
7.1 虚拟内存分配-适合大内存分配,一般是1M之上的内存。
7.2 堆内存分配-适合小内存分配,一般是1M以下的内存。
7.3 栈内存分配-适合小内存分配,一般是1M以下的内存。
//虚拟内存分配函数,分配成功后返回地址
LPVOID VirtualAlloc(  LPVOID lpAddress,//NULL或提交地址
  SIZE_T dwSize, //分配大小
  DWORD flAllocationType,  //分配方式
  DWORD flProtect//内存访问方式
);
flAllocationType:
MEM_COMMIT 分配之后返回地址和内存空间
MEM_RESERVE 保留地址,分配之后只返回地址,内存空间不生成
flProtect:一般 PAGE_READWRITE




//查看内存的使用情况
VOID GlobalMemoryStatus(  LPMEMORYSTATUS lpBuffer
);
typedef struct _MEMORYSTATUS {
    DWORD dwLength;
    DWORD dwMemoryLoad;
    DWORD dwTotalPhys;//物理内存总大小
    DWORD dwAvailPhys;//物理内存可用大小
    DWORD dwTotalPageFile;//虚拟内存总大小
    DWORD dwAvailPageFile;//虚拟内存可用大小
    DWORD dwTotalVirtual;//地址总数
    DWORD dwAvailVirtual;//可用地址数
} MEMORYSTATUS, *LPMEMORYSTATUS;
BOOL VirtualFree(  LPVOID lpAddress,//释放地址
  SIZE_T dwSize,      // 释放大小
  DWORD dwFreeType    // 释放方式
);
dwFreeType:
MEM_DECOMMIT-只释放内存
MEM_RELEASE -释放内存和地址
代码示例:
void ShowMemStatus()
{
MEMORYSTATUS mm;
mm.dwLength=sizeof(mm);
GlobalMemoryStatus(&mm);
printf("内存使用率:%d/100\n",mm.dwMemoryLoad);
printf("TotalPhys:%u MB\n",mm.dwTotalPhys/1024/1024);
printf("AvaliPhys:%u MB\n",mm.dwAvailPhys/1024/1024);
printf("TotalVirtual:%u MB\n",mm.dwTotalPageFile/1024/1024);
printf("AvaliVirtual:%u MB\n",mm.dwAvailPageFile/1024/1024);
printf("TotalAddr:%u MB\n",mm.dwTotalVirtual/1024/1024);
printf("AvaliAddr:%u MB\n",mm.dwAvailVirtual/1024/1024);
}
void Virtual_info()
{
ShowMemStatus();
char* p=(char*)VirtualAlloc(NULL,1024*1024*1024,MEM_COMMIT,PAGE_READWRITE);//1G内存和地址
ShowMemStatus();
VirtualFree(p,0,MEM_RELEASE);
ShowMemStatus();
}
void Virtual_commit()
{
char* p=(char*) VirtualAlloc(NULL,4096,MEM_COMMIT,PAGE_READWRITE);
strcpy(p,"HELLO MEMORY");
printf("%s\n",p);
VirtualFree(p,0,MEM_RELEASE);
}
void Virtual_reserve()
{
//申请地址,不分配内存
char* p =(char*) VirtualAlloc(NULL,1024*1024,MEM_RESERVE,PAGE_READWRITE);
char* p1=(char*)VirtualAlloc(p,4096,MEM_COMMIT,PAGE_READWRITE);//提交内存,以一个内存页4k为最小单位
strcpy(p,"HELLO MEMORY");
printf("%s\n",p);
VirtualFree(p,0,MEM_RELEASE);

}

堆内存Heap
GetProcessHeap-获取程序默认第一个堆
GetProcessHeaps-获取程序所有默认堆
示例:
HANDLE h1=GetProcessHeap();
HANDLE hs[256]={0};
DWORD count=GetProcessHeaps(256,hs);
HeapCreate -创建堆
HeapAlloc -从堆分配内存
  -把内存还给堆
HeapDestroy -销毁堆
示例:
HANDLE h= HeapCreate(HEAP_NO_SERIALIZE,1024*1024,0);
char* p= (char*) HeapAlloc(h,HEAP_ZERO_MEMORY,2*1024*1024);
strcpy(p,"123456");
printf("%s\n",p);
HeapFree(h,0,p);
HeapDestroy(h);
如果要使用,建议用:malloc/new 和 free/delete


内存映射文件的操作,速度快:
1、先创建一个硬盘文件 CreateFile()
2、创建内存映射文件
HANDLE CreateFileMapping(  HANDLE hFile,    // 硬盘文件的句柄
  LPSECURITY_ATTRIBUTES lpAttributes, // 传0就行
  DWORD flProtect,                    // protection
  DWORD dwMaximumSizeHigh,            // 高32位大小,小于4G传0
  DWORD dwMaximumSizeLow,             // 低32位大小
  LPCTSTR lpName                      // 命名,可以为NULL
);
3、获取映射文件中某部分的地址
LPVOID MapViewOfFile(
  HANDLE hFileMappingObject,   // 映射文件句柄
  DWORD dwDesiredAccess,       // 访问权限
  DWORD dwFileOffsetHigh,      // 高32位大小,小于4G传0
  DWORD dwFileOffsetLow,       // 低32位大小
  SIZE_T dwNumberOfBytesToMap  // 映射的字节数量
);
dwFileOffsetHigh和dwFileOffsetLow 的合成必须是64K的整数倍。
4、断开地址和映射文件某部分
BOOL UnmapViewOfFile(  LPCVOID lpBaseAddress//
);
5、关闭映射文件
CloseHandle(HANDLE)
6、关闭硬盘文件
CloseHandle(HANDLE);
示例:
HANDLE file=CreateFile("file.txt",GENERIC_READ|GENERIC_WRITE,FILE_SHARE_READ,
0,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
HANDLE map=CreateFileMapping(file,0,PAGE_READWRITE,0,1024*1024,"pkm");
//
char* p=(char*)MapViewOfFile(map,FILE_MAP_ALL_ACCESS,0,64*1024,0);
strcpy(p,"adsadsad asd as d\n as d a\n s d as d a s aaaaa bbbbb ccccc\n");
printf("%s\n",p);
UnmapViewOfFile(p);
getchar();
CloseHandle(map);//关闭就没了,如果其他进程要使用,则不能关。
CloseHandle(file);//关闭了还在硬盘上




其他进程获取本进程已经创建好的映射文件,不能提前关闭映射文件
HANDLE OpenFileMapping(  DWORD dwDesiredAccess,  // access mode
  BOOL bInheritHandle,    // 返回值能否被子进程使用
  LPCTSTR lpName          // 映射名称
);
示例:
HANDLE map=OpenFileMapping(FILE_MAP_ALL_ACCESS,FALSE,"pkm");
char* p=(char*)MapViewOfFile(map,FILE_MAP_ALL_ACCESS,0,64*1024,0);
printf("%s\n",p);
UnmapViewOfFile(p);


示例代码:

// winVirtual.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include<STDIO.H>
#include <WINDOWS.H>
void ShowMemStatus()
{
	MEMORYSTATUS mm;
	mm.dwLength=sizeof(mm);
	GlobalMemoryStatus(&mm);
	printf("内存使用率:%d/100\n",mm.dwMemoryLoad);
	printf("TotalPhys:%u MB\n",mm.dwTotalPhys/1024/1024);
	printf("AvaliPhys:%u MB\n",mm.dwAvailPhys/1024/1024);
	printf("TotalVirtual:%u MB\n",mm.dwTotalPageFile/1024/1024);
	printf("AvaliVirtual:%u MB\n",mm.dwAvailPageFile/1024/1024);
	printf("TotalAddr:%u MB\n",mm.dwTotalVirtual/1024/1024);
	printf("AvaliAddr:%u MB\n",mm.dwAvailVirtual/1024/1024);
}
void Virtual_info()
{
	ShowMemStatus();
	char* p=(char*)VirtualAlloc(NULL,1024*1024*1024,MEM_COMMIT,PAGE_READWRITE);
	ShowMemStatus();
	VirtualFree(p,0,MEM_RELEASE);
	ShowMemStatus();
}
void Virtual_commit()
{
	char* p=(char*) VirtualAlloc(NULL,4096,MEM_COMMIT,PAGE_READWRITE);
	strcpy(p,"HELLO MEMORY");
	printf("%s\n",p);
	VirtualFree(p,0,MEM_RELEASE);
}
void Virtual_reserve()
{
	//申请地址,不分配内存
	char* p =(char*) VirtualAlloc(NULL,1024*1024,MEM_RESERVE,PAGE_READWRITE);
	char* p1=(char*)VirtualAlloc(p,4096,MEM_COMMIT,PAGE_READWRITE);//提交内存,以一个内存页4k为最小单位
	strcpy(p,"HELLO MEMORY");
	printf("%s\n",p);
	VirtualFree(p,0,MEM_RELEASE);
}
void HeapInfo()
{
	HANDLE h1=GetProcessHeap();
	printf("h1-%d\n",h1);
	HANDLE hs[256]={0};
	DWORD count=GetProcessHeaps(256,hs);
	for(int i=0;i<count;i++)
	{
		printf("%d-%d\n",i,hs[i]);
	}
}
void MyHead()
{
	HANDLE h= HeapCreate(HEAP_NO_SERIALIZE,1024*1024,0);
	char* p= (char*) HeapAlloc(h,HEAP_ZERO_MEMORY,2*1024*1024);
	strcpy(p,"123456");
	printf("%s\n",p);
	HeapFree(h,0,p);
	HeapDestroy(h);
}

void FileMap()
{
	HANDLE file=CreateFile("file.txt",GENERIC_READ|GENERIC_WRITE,FILE_SHARE_READ,
		0,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);
	HANDLE map=CreateFileMapping(file,0,PAGE_READWRITE,0,1024*1024,"pkm");
	//
	char* p=(char*)MapViewOfFile(map,FILE_MAP_ALL_ACCESS,0,64*1024,0);
	strcpy(p,"adsadsad asd as d\n as d a\n s d as d a s aaaaa bbbbb ccccc\n");
	printf("%s\n",p);
	UnmapViewOfFile(p);
	getchar();
	CloseHandle(map);//关闭就没了,如果其他进程要使用,则不能关。
	CloseHandle(file);//关闭了还在硬盘上

}
void ReadFileMap()
{
HANDLE map=OpenFileMapping(FILE_MAP_ALL_ACCESS,FALSE,"pkm");

char* p=(char*)MapViewOfFile(map,FILE_MAP_ALL_ACCESS,0,64*1024,0);
printf("%s\n",p);
UnmapViewOfFile(p);
CloseHandle(map);//关闭就没了
}
int main(int argc, char* argv[])
{
	//Virtual_info();
	//Virtual_commit();
	//Virtual_reserve();
	//HeapInfo();
	//MyHead();
	FileMap();
        //ReadFileMap();
	return 0;
}






相关文章
|
2月前
|
存储 前端开发 Java
Kotlin教程笔记 - MVVM架构怎样避免内存泄漏
Kotlin教程笔记 - MVVM架构怎样避免内存泄漏
32 2
|
4月前
|
程序员 编译器 C++
【C++核心】C++内存分区模型分析
这篇文章详细解释了C++程序执行时内存的四个区域:代码区、全局区、栈区和堆区,以及如何在这些区域中分配和释放内存。
64 2
|
1月前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
2月前
|
算法 Linux 开发者
深入探究Linux内核中的内存管理机制
本文旨在对Linux操作系统的内存管理机制进行深入分析,探讨其如何通过高效的内存分配和回收策略来优化系统性能。文章将详细介绍Linux内核中内存管理的关键技术点,包括物理内存与虚拟内存的映射、页面置换算法、以及内存碎片的处理方法等。通过对这些技术点的解析,本文旨在为读者提供一个清晰的Linux内存管理框架,帮助理解其在现代计算环境中的重要性和应用。
|
3月前
|
监控 Ubuntu Linux
视频监控笔记(五):Ubuntu和windows时区同步问题-your clock is behind
这篇文章介绍了如何在Ubuntu和Windows系统中通过设置相同的时区并使用ntp服务来解决时间同步问题。
93 4
视频监控笔记(五):Ubuntu和windows时区同步问题-your clock is behind
|
1月前
|
存储 缓存 安全
硬盘数据恢复:恢复硬盘数据的9个实用方法(Windows版)
无论是工作文档、家庭照片,还是其他珍贵的数字资产,数据丢失总是一件让人头疼的事情。然而,当硬盘发生问题时,不必过于慌张——只要正确应对,许多数据都可以被成功恢复。本文将从常见数据丢失原因到具体恢复方法,为您提供全面的硬盘数据恢复指导。
|
2月前
|
存储 算法 安全
深入理解Linux内核的内存管理机制
本文旨在深入探讨Linux操作系统内核的内存管理机制,包括其设计理念、实现方式以及优化策略。通过详细分析Linux内核如何处理物理内存和虚拟内存,揭示了其在高效利用系统资源方面的卓越性能。文章还讨论了内存管理中的关键概念如分页、交换空间和内存映射等,并解释了这些机制如何协同工作以提供稳定可靠的内存服务。此外,本文也探讨了最新的Linux版本中引入的一些内存管理改进,以及它们对系统性能的影响。
|
3月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
4月前
|
缓存 Java 测试技术
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
使用JMeter对项目各个接口进行压力测试,并对前端进行动静分离优化,优化三级分类查询接口的性能
126 10
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
|
2月前
|
缓存 算法 Linux
Linux内核中的内存管理机制深度剖析####
【10月更文挑战第28天】 本文深入探讨了Linux操作系统的心脏——内核,聚焦其内存管理机制的奥秘。不同于传统摘要的概述方式,本文将以一次虚拟的内存分配请求为引子,逐步揭开Linux如何高效、安全地管理着从微小嵌入式设备到庞大数据中心数以千计程序的内存需求。通过这段旅程,读者将直观感受到Linux内存管理的精妙设计与强大能力,以及它是如何在复杂多变的环境中保持系统稳定与性能优化的。 ####
45 0

热门文章

最新文章