HBase源码分析之HRegion上compact流程分析(二)

简介:         继《HBase源码分析之HRegion上compact流程分析(一)》一文后,我们继续HRegion上compact流程分析,接下来要讲的是针对表中某个列簇下文件的合并,即HStore的compact()方法,代码如下: /** * Compact the StoreFiles. This method may take some time, so the calling * thread must be able to block for long periods. * * 合并存储文件。

        继《HBase源码分析之HRegion上compact流程分析(一)》一文后,我们继续HRegion上compact流程分析,接下来要讲的是针对表中某个列簇下文件的合并,即HStore的compact()方法,代码如下:

/**
   * Compact the StoreFiles.  This method may take some time, so the calling
   * thread must be able to block for long periods.
   * 
   * 合并存储文件。该方法可能花费一些时间,
   *
   * <p>During this time, the Store can work as usual, getting values from
   * StoreFiles and writing new StoreFiles from the memstore.
   * 在此期间,Store仍能像往常一样工作,从StoreFiles获取数据和从memstore写入新的StoreFiles
   *
   * Existing StoreFiles are not destroyed until the new compacted StoreFile is
   * completely written-out to disk.
   *
   * <p>The compactLock prevents multiple simultaneous compactions.
   * The structureLock prevents us from interfering with other write operations.
   *
   * <p>We don't want to hold the structureLock for the whole time, as a compact()
   * can be lengthy and we want to allow cache-flushes during this period.
   *
   * <p> Compaction event should be idempotent, since there is no IO Fencing for
   * the region directory in hdfs. A region server might still try to complete the
   * compaction after it lost the region. That is why the following events are carefully
   * ordered for a compaction:
   *  1. Compaction writes new files under region/.tmp directory (compaction output)
   *  2. Compaction atomically moves the temporary file under region directory
   *  3. Compaction appends a WAL edit containing the compaction input and output files.
   *  Forces sync on WAL.
   *  4. Compaction deletes the input files from the region directory.
   *
   * Failure conditions are handled like this:
   *  - If RS fails before 2, compaction wont complete. Even if RS lives on and finishes
   *  the compaction later, it will only write the new data file to the region directory.
   *  Since we already have this data, this will be idempotent but we will have a redundant
   *  copy of the data.
   *  - If RS fails between 2 and 3, the region will have a redundant copy of the data. The
   *  RS that failed won't be able to finish snyc() for WAL because of lease recovery in WAL.
   *  - If RS fails after 3, the region region server who opens the region will pick up the
   *  the compaction marker from the WAL and replay it by removing the compaction input files.
   *  Failed RS can also attempt to delete those files, but the operation will be idempotent
   *
   * See HBASE-2231 for details.
   *
   * @param compaction compaction details obtained from requestCompaction()
   * @throws IOException
   * @return Storefile we compacted into or null if we failed or opted out early.
   */
  @Override
  public List<StoreFile> compact(CompactionContext compaction) throws IOException {
    assert compaction != null;
    List<StoreFile> sfs = null;
    
    // 从合并上下文CompactionContext中获得合并请求CompactionRequest,即cr
    CompactionRequest cr = compaction.getRequest();;
    
    try {
      // Do all sanity checking in here if we have a valid CompactionRequest
      // because we need to clean up after it on the way out in a finally
      // block below
      // 
    
      // 获取compact开始时间compactionStartTime
      long compactionStartTime = EnvironmentEdgeManager.currentTime();
      
      // 确保合并请求request不为空,实际上getRequest已经判断并确保request不为空了,这里为什么还要再做判断和保证呢?先留个小小的疑问吧!
      assert compaction.hasSelection();
      
      // 从合并请求cr中获得需要合并的文件集合filesToCompact,集合中存储的都是存储文件StoreFile的实例
      // 这个文件集合是在构造CompactionRequest请求,或者合并其他请求时,根据传入的参数或者其他请求中附带的文件集合来确定的,
      // 即请求一旦生成,需要合并的文件集合filesToCompact就会存在
      Collection<StoreFile> filesToCompact = cr.getFiles();
      
      // 确保需要合并的文件集合filesToCompact不为空
      assert !filesToCompact.isEmpty();
      
      // 确保filesCompacting中包含所有的待合并文件filesToCompact
      synchronized (filesCompacting) {
        // sanity check: we're compacting files that this store knows about
        // TODO: change this to LOG.error() after more debugging
        Preconditions.checkArgument(filesCompacting.containsAll(filesToCompact));
      }

      // Ready to go. Have list of files to compact.
      LOG.info("Starting compaction of " + filesToCompact.size() + " file(s) in "
          + this + " of " + this.getRegionInfo().getRegionNameAsString()
          + " into tmpdir=" + fs.getTempDir() + ", totalSize="
          + StringUtils.humanReadableInt(cr.getSize()));

      // Commence the compaction.
      // 开始合并,调用CompactionContext的compact()方法,获得合并后的新文件newFiles
      List<Path> newFiles = compaction.compact();

      // TODO: get rid of this!
      // 根据参数hbase.hstore.compaction.complete确实是否要完整的完成compact
      // 这里有意思,这么处理意味着,新旧文件同时存在,新文件没有被挪到指定位置且新文件的Reader被关闭,对外提供服务的还是旧文件,啥目的呢?快速应用于读?
      if (!this.conf.getBoolean("hbase.hstore.compaction.complete", true)) {
        LOG.warn("hbase.hstore.compaction.complete is set to false");
        
        // 创建StoreFile列表sfs,大小为newFiles的大小
        sfs = new ArrayList<StoreFile>(newFiles.size());
        
        // 遍历新产生的合并后的文件newFiles,针对每个文件创建StoreFile和Reader,关闭StoreFile上的Reader,
        // 并将创建的StoreFile添加至列表sfs
        for (Path newFile : newFiles) {
          // Create storefile around what we wrote with a reader on it.
          StoreFile sf = createStoreFileAndReader(newFile);
          
          // 关闭其上的Reader
          sf.closeReader(true);
          sfs.add(sf);
        }
        
        // 返回合并后的文件
        return sfs;
      }
      
      // Do the steps necessary to complete the compaction.
      // 执行必要的步骤以完成这个合并
      
      // 移动已完成文件至正确的地方,创建StoreFile和Reader,返回StoreFile列表sfs
      sfs = moveCompatedFilesIntoPlace(cr, newFiles);
      
      // 在WAL中写入Compaction记录
      writeCompactionWalRecord(filesToCompact, sfs);
      
      // 替换StoreFiles:
      // 1、去除掉所有的合并前,即已被合并的文件compactedFiles,将合并后的文件sfs加入到StoreFileManager的storefiles中去,
      // storefiles为Store中目前全部提供服务的存储文件列表;
      // 2、正在合并的文件列表filesCompacting中去除被合并的文件filesToCompact;
      replaceStoreFiles(filesToCompact, sfs);
      
      
      // 根据合并的类型,针对不同的计数器做累加,方便系统性能指标监控
      if (cr.isMajor()) {// 如果是Major合并
    	  
    	// 计数器累加,包括条数和大小
        majorCompactedCellsCount += getCompactionProgress().totalCompactingKVs;
        majorCompactedCellsSize += getCompactionProgress().totalCompactedSize;
      } else {// 如果不是Major合并
    	  
    	// 计数器累加,包括条数和大小
        compactedCellsCount += getCompactionProgress().totalCompactingKVs;
        compactedCellsSize += getCompactionProgress().totalCompactedSize;
      }
      
      // At this point the store will use new files for all new scanners.
      // 至此,store将会为所有新的scanners使用新的文件
      // 完成合并:归档旧文件(在文件系统中删除已被合并的文件compactedFiles,实际上是归档操作,将旧的文件从原位置移到归档目录下),关闭其上的Reader,并更新store大小
      completeCompaction(filesToCompact, true); // Archive old files & update store size.

      // 记录日志信息
      logCompactionEndMessage(cr, sfs, compactionStartTime);
      
      // 返回StoreFile列表sfs
      return sfs;
    } finally {
    	
      // 完成Compaction请求:Region汇报合并请求至终端、filesCompacting中删除请求中的所有待合并文件
      finishCompactionRequest(cr);
    }
  }
        下面,我们来概述下整个流程:

        1、首先,从合并上下文CompactionContext中获得合并请求CompactionRequest,即cr;

        2、获取compact开始时间compactionStartTime;

        3、确保合并请求request不为空:

              实际上getRequest已经判断并确保request不为空了,这里为什么还要再做判断和保证呢?先留个小小的疑问吧!

        4、从合并请求cr中获得需要合并的文件集合filesToCompact:

              集合中存储的都是存储文件StoreFile的实例,这个文件集合是在构造CompactionRequest请求,或者合并其他请求时,根据传入的参数或者其他请求中附带的文件集合来确定的,即请求一旦生成,需要合并的文件集合filesToCompact就会存在。

        5、确保需要合并的文件集合filesToCompact不为空;

        6、确保filesCompacting中包含所有的待合并文件filesToCompact:

              那么这个filesCompacting中的文件是何时添加的呢?

        7、开始合并,调用CompactionContext的compact()方法,获得合并后的新文件newFiles:

              这一步是核心流程,它会持有通过scanner访问待合并文件,然后将数据全部写入新文件,后续文章会着重分析。

        8、根据参数hbase.hstore.compaction.complete确实是否要完整的完成compact,默认为true:

               8.1、如果配置的是false,则:

                        8.1.1、创建StoreFile列表sfs,大小为newFiles的大小;

                        8.1.2、遍历新产生的合并后的文件newFiles,针对每个文件创建StoreFile和Reader,关闭StoreFile上的Reader,并将创建的StoreFile添加至列表sfs;

                        8.1.3、返回合并后的文件列表sfs;

               8.2、如果配置的是true,则:

                        8.2.1、移动已完成文件至正确的地方,创建StoreFile和Reader,返回StoreFile列表sfs;

                        8.2.2、在WAL中写入Compaction记录;

                        8.2.3、替换StoreFiles:包括去除掉所有的合并前,即已被合并的文件compactedFiles,将合并后的文件sfs加入到StoreFileManager的storefiles中去,storefiles为Store中目前全部提供服务的存储文件列表,还有正在合并的文件列表filesCompacting中去除被合并的文件filesToCompact。

                        8.2.4、根据合并的类型,针对不同的计数器做累加,方便系统性能指标监控;

                        8.2.5、完成合并:归档旧文件(在文件系统中删除已被合并的文件compactedFiles,实际上是归档操作,将旧的文件从原位置移到归档目录下),关闭其上的Reader,并更新store大小;

                        8.2.6、记录日志信息;

                        8.2.7、完成Compaction请求:Region汇报合并请求至终端、filesCompacting中删除请求中的所有待合并文件;

                        8.2.8、返回StoreFile列表sfs。

        至此,整个流程详述完毕。接下来,我们针对其中的部分细节,再做详细描述。

        首先,真正执行合并的CompactionContext的compact()方法我们暂时不讲,只需要知道它会持有通过scanner访问待合并文件,然后将数据全部写入新文件,并得到这些新文件的集合newFiles即可,我们会在后续文章详细介绍。

        接下来,在获得合并后的新文件newFiles之后,我们会根据一个参数来确定后续处理流程,这个参数就是hbase.hstore.compaction.complete,由它来确定是否完整的结束一次合并操作,这完整与非完整的主要区别,或者说实质性区别就是:由谁来继续对外提供数据读取服务。

        先来看下非完整性结束,它会为合并后的每个文件创建StoreFile和Reader实例,同时关闭新文件上的Reader,也就意味着扔继续由旧文件提供数据读取服务,而新文件与旧文件同时存在,旧文件位置不变,涉及到列簇CF下的目前所有可用storefiles列表不变,存储的仍是旧文件的StoreFile对象;

        而对于完整性结束来说,它会移动已完成文件至正确的地方,创建StoreFile和Reader,返回StoreFile列表sfs,然后在WAL中写入Compaction记录,并替换掉storefiles,根据合并的类型,针对不同的计数器做累加,方便系统性能指标监控,归档旧文件(在文件系统中删除已被合并的文件compactedFiles,实际上是归档操作,将旧的文件从原位置移到归档目录下),关闭其上的Reader,并更新store大小,完成Compaction请求:Region汇报合并请求至终端、filesCompacting中删除请求中的所有待合并文件等等,很多复杂的操作。不要着急,我们就其中复杂的地方,一个个的解释:

        1、移动已完成文件至正确的地方,创建StoreFile和Reader,返回StoreFile列表sfs

        这个是通过moveCompatedFilesIntoPlace()方法实现的,代码如下:

private List<StoreFile> moveCompatedFilesIntoPlace(
      CompactionRequest cr, List<Path> newFiles) throws IOException {
    
	// 创建StoreFile列表sfs
	List<StoreFile> sfs = new ArrayList<StoreFile>(newFiles.size());
	
	// 遍历newFiles
    for (Path newFile : newFiles) {
      assert newFile != null;
      
      // 将新文件newFile挪至正确地点,并创建StoreFile和Reader
      StoreFile sf = moveFileIntoPlace(newFile);
      if (this.getCoprocessorHost() != null) {
        this.getCoprocessorHost().postCompact(this, sf, cr);
      }
      assert sf != null;
      sfs.add(sf);
    }
    return sfs;
  }
        首先呢,创建StoreFile列表sfs,遍历合并后的文件newFiles,将新文件newFile挪至正确地点,并创建StoreFile和Reader。而文件位置改变,则是通过moveFileIntoPlace()方法实现的,它的代码如下:

// Package-visible for tests
  StoreFile moveFileIntoPlace(final Path newFile) throws IOException {
    
	// 检测新文件
	validateStoreFile(newFile);
	
    // Move the file into the right spot
	// 移动文件至正确的地点
    Path destPath = fs.commitStoreFile(getColumnFamilyName(), newFile);
    
    // 创建StoreFile和Reader
    return createStoreFileAndReader(destPath);
  }
        我们发现,移动文件实际上是通过HStore的成员变量fs的commitStoreFile()方法来完成的。这个fs是HRegionFileSystem类型的变量,HRegionFileSystem是HRegion上文件系统的一个抽象,它实现了各种文件等的实际物理操作。我们来看下它的commitStoreFile()方法:

/**
   * Move the file from a build/temp location to the main family store directory.
   * @param familyName Family that will gain the file
   * @param buildPath {@link Path} to the file to commit.
   * @param seqNum Sequence Number to append to the file name (less then 0 if no sequence number)
   * @param generateNewName False if you want to keep the buildPath name
   * @return The new {@link Path} of the committed file
   * @throws IOException
   */
  private Path commitStoreFile(final String familyName, final Path buildPath,
      final long seqNum, final boolean generateNewName) throws IOException {
    
	// 根据列簇名familyName获取存储路径storeDir
	Path storeDir = getStoreDir(familyName);
	
	// 如果在文件系统fs中不存在路径的情况下创建它时失败则抛出异常
    if(!fs.exists(storeDir) && !createDir(storeDir))
      throw new IOException("Failed creating " + storeDir);

    String name = buildPath.getName();
    if (generateNewName) {
      name = generateUniqueName((seqNum < 0) ? null : "_SeqId_" + seqNum + "_");
    }
    Path dstPath = new Path(storeDir, name);
    if (!fs.exists(buildPath)) {
      throw new FileNotFoundException(buildPath.toString());
    }
    LOG.debug("Committing store file " + buildPath + " as " + dstPath);
    // buildPath exists, therefore not doing an exists() check.
    if (!rename(buildPath, dstPath)) {
      throw new IOException("Failed rename of " + buildPath + " to " + dstPath);
    }
    return dstPath;
  }
        非常简单,根据列簇名familyName获取存储路径storeDir,检测并在必要时创建storeDir,根据buildPath来获取文件名name,然后利用storeDir和name来构造目标路径storeDir,通过rename()方法实现文件从buildPath至dstPath的移动即可。

        而创建StoreFile和Reader的方法最终调用的是createStoreFileAndReader()方法,代码如下:

private StoreFile createStoreFileAndReader(final StoreFileInfo info)
      throws IOException {
    info.setRegionCoprocessorHost(this.region.getCoprocessorHost());
    StoreFile storeFile = new StoreFile(this.getFileSystem(), info, this.conf, this.cacheConf,
      this.family.getBloomFilterType());
    storeFile.createReader();
    return storeFile;
  }
        StoreFile是一个存储数据文件。Stores通常含有一个或多个StoreFile,而Reader是其内部类,由Reader来提供文件数据的读取服务。

        2、在WAL中写入Compaction记录

        这个过程是通过writeCompactionWalRecord()方法来完成的,代码如下:

/**
   * Writes the compaction WAL record.
   * 在WAL中写入合并记录
   * 
   * @param filesCompacted Files compacted (input).
   * @param newFiles Files from compaction.
   */
  private void writeCompactionWalRecord(Collection<StoreFile> filesCompacted,
      Collection<StoreFile> newFiles) throws IOException {
    
	// 如果region中的WAL为空,则直接返回  
	if (region.getWAL() == null) return;
	
	// 将被合并的文件路径添加至inputPaths列表
    List<Path> inputPaths = new ArrayList<Path>(filesCompacted.size());
    for (StoreFile f : filesCompacted) {
      inputPaths.add(f.getPath());
    }
    
    // 将合并后的文件路径添加至inputPaths列表
    List<Path> outputPaths = new ArrayList<Path>(newFiles.size());
    for (StoreFile f : newFiles) {
      outputPaths.add(f.getPath());
    }
    
    // 获取HRegionInfo,即info
    HRegionInfo info = this.region.getRegionInfo();
    
    // 构造compaction的描述信息CompactionDescriptor
    CompactionDescriptor compactionDescriptor = ProtobufUtil.toCompactionDescriptor(info,
        family.getName(), inputPaths, outputPaths, fs.getStoreDir(getFamily().getNameAsString()));
    
    // 利用WALUtil工具类的writeCompactionMarker()方法,在WAL中写入一个合并标记
    WALUtil.writeCompactionMarker(region.getWAL(), this.region.getTableDesc(),
        this.region.getRegionInfo(), compactionDescriptor, this.region.getSequenceId());
  }
        逻辑比较简单:

        1、将被合并的文件路径添加至inputPaths列表;

        2、将合并后的文件路径添加至outputPaths列表;

        3、获取HRegionInfo,即info;

        4、构造compaction的描述信息CompactionDescriptor;

        5、利用WALUtil工具类的writeCompactionMarker()方法,在WAL中写入一个合并标记。

        首先说下这个compaction的描述信息CompactionDescriptor,其中包含了表名TableName、Region名EncodedRegionName、列簇名FamilyName、存储Home路径StoreHomeDir、合并的输入CompactionInput、合并的输出CompactionOutput等关键信息,完整的描述了合并的全部详细信息。其构造代码如下:

public static CompactionDescriptor toCompactionDescriptor(HRegionInfo info, byte[] family,
      List<Path> inputPaths, List<Path> outputPaths, Path storeDir) {
    // compaction descriptor contains relative paths.
    // input / output paths are relative to the store dir
    // store dir is relative to region dir
    CompactionDescriptor.Builder builder = CompactionDescriptor.newBuilder()
        .setTableName(ByteStringer.wrap(info.getTableName()))
        .setEncodedRegionName(ByteStringer.wrap(info.getEncodedNameAsBytes()))
        .setFamilyName(ByteStringer.wrap(family))
        .setStoreHomeDir(storeDir.getName()); //make relative
    for (Path inputPath : inputPaths) {
      builder.addCompactionInput(inputPath.getName()); //relative path
    }
    for (Path outputPath : outputPaths) {
      builder.addCompactionOutput(outputPath.getName());
    }
    builder.setRegionName(ByteStringer.wrap(info.getRegionName()));
    return builder.build();
  }
       最后,利用WALUtil工具类的writeCompactionMarker()方法,在WAL中写入一个合并标记,我们来看下代码:

/**
   * Write the marker that a compaction has succeeded and is about to be committed.
   * This provides info to the HMaster to allow it to recover the compaction if
   * this regionserver dies in the middle (This part is not yet implemented). It also prevents
   * the compaction from finishing if this regionserver has already lost its lease on the log.
   * @param sequenceId Used by WAL to get sequence Id for the waledit.
   */
  public static void writeCompactionMarker(WAL log, HTableDescriptor htd, HRegionInfo info,
      final CompactionDescriptor c, AtomicLong sequenceId) throws IOException {
    
	// 从合并信息CompactionDescriptor中获取表名tn
	TableName tn = TableName.valueOf(c.getTableName().toByteArray());
	
    // we use HLogKey here instead of WALKey directly to support legacy coprocessors.
	
	// 根据region的名字、表明tn,创建一个WALKey
    WALKey key = new HLogKey(info.getEncodedNameAsBytes(), tn);
    
    // WAL中添加一条记录,包括表的描述信息HTableDescriptor、WALKey、Compaction信息WALEdit、序列号sequenceId
    // Compaction信息WALEdit是根据WALEdit的createCompaction()方法,由HRegionInfo、CompactionDescriptor获取的
    // 
    log.append(htd, info, key, WALEdit.createCompaction(info, c), sequenceId, false, null);
    
    // 同步日志
    log.sync();
    if (LOG.isTraceEnabled()) {
      LOG.trace("Appended compaction marker " + TextFormat.shortDebugString(c));
    }
  }
        它实际上在WAL中append了一条记录,包括表的描述信息HTableDescriptor、WALKey、Compaction信息WALEdit、序列号sequenceId,而Compaction信息WALEdit是根据WALEdit的createCompaction()方法,由HRegionInfo、CompactionDescriptor构造的。代码如下:

/**
   * Create a compacion WALEdit
   * @param c
   * @return A WALEdit that has <code>c</code> serialized as its value
   */
  public static WALEdit createCompaction(final HRegionInfo hri, final CompactionDescriptor c) {
    
	// 将CompactionDescriptor转化成byte []
	byte [] pbbytes = c.toByteArray();
	
	// 构造KeyValue,包括Region的startKey、“METAFAMILY”字符串、
	// "HBASE::COMPACTION"字符串、当前时间和合并描述CompactionDescriptor的二进制形式
    KeyValue kv = new KeyValue(getRowForRegion(hri), METAFAMILY, COMPACTION,
      EnvironmentEdgeManager.currentTime(), pbbytes);
    
    // 将KeyValue添加至WALEdit,并返回WALEdit实例
    return new WALEdit().add(kv); //replication scope null so that this won't be replicated
  }
        代码注释比较详细,不再赘述。

        3、替换StoreFiles,其中包括亮点:

             (1)去除掉所有的合并前,即已被合并的文件compactedFiles,将合并后的文件sfs加入到StoreFileManager的storefiles中去,storefiles为Store中目前全部提供服务的存储文件列表;

             (2)正在合并的文件列表filesCompacting中去除被合并的文件filesToCompact;

        具体代码replaceStoreFiles()方法如下:

@VisibleForTesting
  void replaceStoreFiles(final Collection<StoreFile> compactedFiles,
      final Collection<StoreFile> result) throws IOException {
    
	// 加锁,上读写锁ReentrantReadWriteLock的写锁,意味着这是一把互斥锁
	this.lock.writeLock().lock();
    try {
      // 通过StoreFileManager的addCompactionResults()方法,将被合并的文件
      // 去除掉所有的合并前,即已被合并的文件compactedFiles
      // 将合并后的文件加入到StoreFileManager的storefiles中去,storefiles为Store中目前全部提供服务的存储文件列表
      this.storeEngine.getStoreFileManager().addCompactionResults(compactedFiles, result);
      
      // 正在合并的文件列表filesCompacting中去除被合并的文件
      filesCompacting.removeAll(compactedFiles); // safe bc: lock.writeLock();
    } finally {
      // 解锁
      this.lock.writeLock().unlock();
    }
  }
        4、完成合并:归档旧文件(在文件系统中删除已被合并的文件compactedFiles,实际上是归档操作,将旧的文件从原位置移到归档目录下),关闭其上的Reader,并更新store大小。completeCompaction()代码如下:

  /**
   * <p>It works by processing a compaction that's been written to disk.
   *
   * <p>It is usually invoked at the end of a compaction, but might also be
   * invoked at HStore startup, if the prior execution died midway through.
   *
   * <p>Moving the compacted TreeMap into place means:
   * <pre>
   * 1) Unload all replaced StoreFile, close and collect list to delete.
   * 2) Compute new store size
   * </pre>
   *
   * @param compactedFiles list of files that were compacted
   */
  @VisibleForTesting
  protected void completeCompaction(final Collection<StoreFile> compactedFiles, boolean removeFiles)
      throws IOException {
    try {
      // Do not delete old store files until we have sent out notification of
      // change in case old files are still being accessed by outstanding scanners.
      // Don't do this under writeLock; see HBASE-4485 for a possible deadlock
      // scenario that could have happened if continue to hold the lock.
      // 通知Reader观察者
      notifyChangedReadersObservers();
      // At this point the store will use new files for all scanners.

      // let the archive util decide if we should archive or delete the files
      LOG.debug("Removing store files after compaction...");
      
      // 遍历已被合并的文件completeCompaction,关闭其上的Reader
      for (StoreFile compactedFile : compactedFiles) {
        compactedFile.closeReader(true);
      }
      
      // 在文件系统中删除已被合并的文件compactedFiles,实际上是归档操作,将旧的文件从原位置移到归档目录下
      if (removeFiles) {
        this.fs.removeStoreFiles(this.getColumnFamilyName(), compactedFiles);
      }
    } catch (IOException e) {
      e = RemoteExceptionHandler.checkIOException(e);
      LOG.error("Failed removing compacted files in " + this +
        ". Files we were trying to remove are " + compactedFiles.toString() +
        "; some of them may have been already removed", e);
    }

    // 4. Compute new store size
    // 计算新的store大小
    this.storeSize = 0L;
    this.totalUncompressedBytes = 0L;
    
    // 遍历StoreFiles,计算storeSize、totalUncompressedBytes等大小
    for (StoreFile hsf : this.storeEngine.getStoreFileManager().getStorefiles()) {
      StoreFile.Reader r = hsf.getReader();
      if (r == null) {
        LOG.warn("StoreFile " + hsf + " has a null Reader");
        continue;
      }
      this.storeSize += r.length();
      this.totalUncompressedBytes += r.getTotalUncompressedBytes();
    }
  }

        其他代码注释中都有,这里,我们要单独说下HRegionFileSystem的removeStoreFiles()方法,如下:

/**
   * Closes and archives the specified store files from the specified family.
   * @param familyName Family that contains the store files
   * @param storeFiles set of store files to remove
   * @throws IOException if the archiving fails
   */
  public void removeStoreFiles(final String familyName, final Collection<StoreFile> storeFiles)
      throws IOException {
    HFileArchiver.archiveStoreFiles(this.conf, this.fs, this.regionInfoForFs,
        this.tableDir, Bytes.toBytes(familyName), storeFiles);
  }
        它最终是通过HFileArchiver的archiveStoreFiles()方法来完成的,代码如下:

/**
   * Remove the store files, either by archiving them or outright deletion
   * @param conf {@link Configuration} to examine to determine the archive directory
   * @param fs the filesystem where the store files live
   * @param regionInfo {@link HRegionInfo} of the region hosting the store files
   * @param family the family hosting the store files
   * @param compactedFiles files to be disposed of. No further reading of these files should be
   *          attempted; otherwise likely to cause an {@link IOException}
   * @throws IOException if the files could not be correctly disposed.
   */
  public static void archiveStoreFiles(Configuration conf, FileSystem fs, HRegionInfo regionInfo,
      Path tableDir, byte[] family, Collection<StoreFile> compactedFiles) throws IOException {

    // sometimes in testing, we don't have rss, so we need to check for that
    if (fs == null) {
      LOG.warn("Passed filesystem is null, so just deleting the files without archiving for region:"
          + Bytes.toString(regionInfo.getRegionName()) + ", family:" + Bytes.toString(family));
      deleteStoreFilesWithoutArchiving(compactedFiles);
      return;
    }

    // short circuit if we don't have any files to delete
    // 判断被合并文件列表compactedFiles的大小,如果为0,立即返回
    if (compactedFiles.size() == 0) {
      LOG.debug("No store files to dispose, done!");
      return;
    }

    // build the archive path
    if (regionInfo == null || family == null) throw new IOException(
        "Need to have a region and a family to archive from.");

    // 获取归档存储路径
    Path storeArchiveDir = HFileArchiveUtil.getStoreArchivePath(conf, regionInfo, tableDir, family);

    // make sure we don't archive if we can't and that the archive dir exists
    // 创建路径
    if (!fs.mkdirs(storeArchiveDir)) {
      throw new IOException("Could not make archive directory (" + storeArchiveDir + ") for store:"
          + Bytes.toString(family) + ", deleting compacted files instead.");
    }

    // otherwise we attempt to archive the store files
    if (LOG.isDebugEnabled()) LOG.debug("Archiving compacted store files.");

    // Wrap the storefile into a File
    StoreToFile getStorePath = new StoreToFile(fs);
    Collection<File> storeFiles = Collections2.transform(compactedFiles, getStorePath);

    // do the actual archive
    // 通过resolveAndArchive()执行归档
    if (!resolveAndArchive(fs, storeArchiveDir, storeFiles)) {
      throw new IOException("Failed to archive/delete all the files for region:"
          + Bytes.toString(regionInfo.getRegionName()) + ", family:" + Bytes.toString(family)
          + " into " + storeArchiveDir + ". Something is probably awry on the filesystem.");
    }
  }
        层层调用啊,接着来吧,继续看关键代码:

// 如果是文件
        if (file.isFile()) {
          // attempt to archive the file
          if (!resolveAndArchiveFile(baseArchiveDir, file, startTime)) {
            LOG.warn("Couldn't archive " + file + " into backup directory: " + baseArchiveDir);
            failures.add(file);
          }
        }
        而这个resolveAndArchiveFile()方法不是简单的删除文件,而是通过rename()方法将旧的存储文件挪至了归档路径下,代码如下:

// move the archive file to the stamped backup
      Path backedupArchiveFile = new Path(archiveDir, filename + SEPARATOR + archiveStartTime);
      if (!fs.rename(archiveFile, backedupArchiveFile)) {
        LOG.error("Could not rename archive file to backup: " + backedupArchiveFile
            + ", deleting existing file in favor of newer.");
        // try to delete the exisiting file, if we can't rename it
        if (!fs.delete(archiveFile, false)) {
          throw new IOException("Couldn't delete existing archive file (" + archiveFile
              + ") or rename it to the backup file (" + backedupArchiveFile
              + ") to make room for similarly named file.");
        }
      }
        5、完成Compaction请求:Region汇报合并请求至终端、filesCompacting中删除请求中的所有待合并文件

        这部分是由方法finishCompactionRequest()完成的,代码如下:

private void finishCompactionRequest(CompactionRequest cr) {
    // Region汇报合并请求至终端
	this.region.reportCompactionRequestEnd(cr.isMajor(), cr.getFiles().size(), cr.getSize());
    
	// 
	if (cr.isOffPeak()) {
      offPeakCompactionTracker.set(false);
      cr.setOffPeak(false);
    }
    
    // filesCompacting中删除请求中的所有待合并文件
    synchronized (filesCompacting) {
      filesCompacting.removeAll(cr.getFiles());
    }
  }
        读者可自行分析,不再赘述。

        好了,就先到这里吧,且待下回分解!














          



相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
8月前
|
分布式数据库 Hbase
HBase读取与写入流程
HBase读取与写入流程
79 0
|
5月前
|
分布式计算 大数据 分布式数据库
"揭秘HBase MapReduce高效数据处理秘诀:四步实战攻略,让你轻松玩转大数据分析!"
【8月更文挑战第17天】大数据时代,HBase以高性能、可扩展性成为关键的数据存储解决方案。结合MapReduce分布式计算框架,能高效处理HBase中的大规模数据。本文通过实例展示如何配置HBase集群、编写Map和Reduce函数,以及运行MapReduce作业来计算HBase某列的平均值。此过程不仅限于简单的统计分析,还可扩展至更复杂的数据处理任务,为企业提供强有力的大数据技术支持。
91 1
|
8月前
|
分布式计算 Hadoop 关系型数据库
Hadoop任务scan Hbase 导出数据量变小分析
Hadoop任务scan Hbase 导出数据量变小分析
101 0
|
8月前
|
SQL 消息中间件 分布式数据库
基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(三)离线分析
基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(三)离线分析
136 0
|
存储 SQL 分布式数据库
记录一次 Hbase 线上问题的分析和解决,并分析总结下背后的知识点 - KeyValue size too large
记录一次 Hbase 线上问题的分析和解决,并分析总结下背后的知识点 - KeyValue size too large
|
存储 分布式计算 关系型数据库
Hbase原理介绍和使用场景分析
Hbase原理介绍和使用场景分析
1003 0
|
存储 分布式计算 Hadoop
分布式数据库HBase的重要机制和原理的读/写流程
HBase是一个分布式数据库系统,基于Google的BigTable和Apache Hadoop的HDFS构建。它提供了一个高性能、可扩展的数据库平台,适用于大规模的数据存储和处理。在阿里云开发者社区中,很多开发者都会使用HBase进行数据存储和处理。本文将介绍HBase的读/写流程。
181 0
|
4月前
|
分布式计算 Java Hadoop
java使用hbase、hadoop报错举例
java使用hbase、hadoop报错举例
128 4
|
3月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
92 4
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
43 3