HDFS源码分析心跳汇报之数据结构初始化

简介:         在《HDFS源码分析心跳汇报之整体结构》一文中,我们详细了解了HDFS中关于心跳的整体结构,知道了BlockPoolManager、BPOfferService和BPServiceActor三者之间的关系。

        在《HDFS源码分析心跳汇报之整体结构》一文中,我们详细了解了HDFS中关于心跳的整体结构,知道了BlockPoolManager、BPOfferService和BPServiceActor三者之间的关系。那么,HDFS心跳相关的这些数据结构,都是如何被初始化的呢?本文,我们就开始研究HDFS心跳汇报之数据结构初始化。

        首先,在DataNode节点启动时所必须执行的startDataNode()方法中,有如下代码:

    // DataNode启动时执行的startDataNode()方法
    // 构造一个BlockPoolManager实例
    // 调用其refreshNamenodes()方法
    blockPoolManager = new BlockPoolManager(this);
    blockPoolManager.refreshNamenodes(conf);
        它构造了一个BlockPoolManager实例,并调用其refreshNamenodes()方法,完成NameNodes的刷新。我们来看下这个方法:

  void refreshNamenodes(Configuration conf)
      throws IOException {
    LOG.info("Refresh request received for nameservices: " + conf.get
            (DFSConfigKeys.DFS_NAMESERVICES));

    // 从配置信息conf中获取nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap
    Map<String, Map<String, InetSocketAddress>> newAddressMap = DFSUtil
            .getNNServiceRpcAddressesForCluster(conf);

    // 需要通过使用synchronized关键字在refreshNamenodesLock上加互斥锁
    synchronized (refreshNamenodesLock) {
      // 调用doRefreshNamenodes()方法执行集合newAddressMap中的刷新
      doRefreshNamenodes(newAddressMap);
    }
  }
        很简单,两大步骤:第一步,从配置信息conf中获取nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap,第二步调用doRefreshNamenodes()方法执行集合newAddressMap中NameNodes的刷新。

        首先,我们看下如何从配置信息conf中获取nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap,相关代码如下:

  /**
   * Returns list of InetSocketAddresses corresponding to the namenode
   * that manages this cluster. Note this is to be used by datanodes to get
   * the list of namenode addresses to talk to.
   *
   * Returns namenode address specifically configured for datanodes (using
   * service ports), if found. If not, regular RPC address configured for other
   * clients is returned.
   *
   * @param conf configuration
   * @return list of InetSocketAddress
   * @throws IOException on error
   */
  public static Map<String, Map<String, InetSocketAddress>>
    getNNServiceRpcAddressesForCluster(Configuration conf) throws IOException {
    
	// Use default address as fall back
    String defaultAddress;
    try {
      // 获取默认地址defaultAddress
      defaultAddress = NetUtils.getHostPortString(NameNode.getAddress(conf));
    } catch (IllegalArgumentException e) {
      defaultAddress = null;
    }

    // 获取hdfs的内部命名服务:dfs.internal.nameservices,得到集合parentNameServices
    Collection<String> parentNameServices = conf.getTrimmedStringCollection
            (DFSConfigKeys.DFS_INTERNAL_NAMESERVICES_KEY);

    if (parentNameServices.isEmpty()) {// 如果没有配置dfs.internal.nameservices
      // 获取dfs.nameservices,赋值给集合parentNameServices
      parentNameServices = conf.getTrimmedStringCollection
              (DFSConfigKeys.DFS_NAMESERVICES);
    } else {
      // Ensure that the internal service is ineed in the list of all available
      // nameservices.
      
      // 获取dfs.nameservices
      Set<String> availableNameServices = Sets.newHashSet(conf
              .getTrimmedStringCollection(DFSConfigKeys.DFS_NAMESERVICES));
      
      // 验证parentNameServices中的每个nsId在dfs.nameservices中是否都存在
      // 即参数dfs.internal.nameservices包含在参数dfs.nameservices范围内
      for (String nsId : parentNameServices) {
        if (!availableNameServices.contains(nsId)) {
          throw new IOException("Unknown nameservice: " + nsId);
        }
      }
    }

    // 调用getAddressesForNsIds()方法,获取nameserviceId->{nameNodeId->InetSocketAddress}对应关系的集合
    // dfs.namenode.servicerpc-address
    // dfs.namenode.rpc-address
    Map<String, Map<String, InetSocketAddress>> addressList =
            getAddressesForNsIds(conf, parentNameServices, defaultAddress,
                    DFS_NAMENODE_SERVICE_RPC_ADDRESS_KEY, DFS_NAMENODE_RPC_ADDRESS_KEY);
    if (addressList.isEmpty()) {
      throw new IOException("Incorrect configuration: namenode address "
              + DFS_NAMENODE_SERVICE_RPC_ADDRESS_KEY + " or "
              + DFS_NAMENODE_RPC_ADDRESS_KEY
              + " is not configured.");
    }
    return addressList;
  }
        这个方法的处理逻辑如下:

        1、首先,根据NameNode类的静态方法getAddress()从配置信息中获取默认地址defaultAddress;

        2、然后,获取hdfs的内部命名服务:dfs.internal.nameservices,得到集合parentNameServices:

              2.1、如果没有配置dfs.internal.nameservices,获取dfs.nameservices,赋值给集合parentNameServices;

              2.2、如果配置了dfs.internal.nameservices,再获取获取dfs.nameservices,得到availableNameServices,验证parentNameServices中的每个nsId在availableNameServices中是否都存在,即参数dfs.internal.nameservices包含在参数dfs.nameservices范围内;

        3、调用getAddressesForNsIds()方法,利用conf、parentNameServices、defaultAddress等获取nameserviceId->{nameNodeId->InetSocketAddress}对应关系的集合addressList,并返回。

        下面,我们再看下getAddressesForNsIds()方法,代码如下:

  /**
   * Returns the configured address for all NameNodes in the cluster.
   * @param conf configuration
   * @param nsIds
   *@param defaultAddress default address to return in case key is not found.
   * @param keys Set of keys to look for in the order of preference   @return a map(nameserviceId to map(namenodeId to InetSocketAddress))
   */
  private static Map<String, Map<String, InetSocketAddress>>
    getAddressesForNsIds(Configuration conf, Collection<String> nsIds,
                         String defaultAddress, String... keys) {
    // Look for configurations of the form <key>[.<nameserviceId>][.<namenodeId>]
    // across all of the configured nameservices and namenodes.
	
	// dfs.namenode.servicerpc-address
	// dfs.namenode.rpc-address
    Map<String, Map<String, InetSocketAddress>> ret = Maps.newLinkedHashMap();
    
    // 遍历每个nameserviceId,做以下处理:
    for (String nsId : emptyAsSingletonNull(nsIds)) {
    	
      // 通过getAddressesForNameserviceId()方法获取nameNodeId->InetSocketAddress的对应关系,nameNodeId来自参数dfs.ha.namenodes.nsId
      Map<String, InetSocketAddress> isas =
        getAddressesForNameserviceId(conf, nsId, defaultAddress, keys);
      if (!isas.isEmpty()) {
    	  
    	// 将nameserviceId->{nameNodeId->InetSocketAddress}的对应关系放入集合ret
        ret.put(nsId, isas);
      }
    }
    
    // 返回nameserviceId->{nameNodeId->InetSocketAddress}对应关系的集合ret
    return ret;
  }
        非常简单,遍历每个nameserviceId,做以下处理:

        1、通过getAddressesForNameserviceId()方法获取nameNodeId->InetSocketAddress的对应关系,nameNodeId来自参数dfs.ha.namenodes.nsId;

        2、将nameserviceId->{nameNodeId->InetSocketAddress}的对应关系放入集合ret;

        3、最后返回nameserviceId->{nameNodeId->InetSocketAddress}对应关系的集合ret。

        继续看getAddressesForNameserviceId()方法,如下:

  private static Map<String, InetSocketAddress> getAddressesForNameserviceId(
      Configuration conf, String nsId, String defaultValue,
      String... keys) {
	// keys
	// dfs.namenode.servicerpc-address
	// dfs.namenode.rpc-address
	  
	// 获取dfs.ha.namenodes.nsId
    Collection<String> nnIds = getNameNodeIds(conf, nsId);
    Map<String, InetSocketAddress> ret = Maps.newHashMap();
    for (String nnId : emptyAsSingletonNull(nnIds)) {
      String suffix = concatSuffixes(nsId, nnId);
      
      // 根据keys获取address
      String address = getConfValue(defaultValue, suffix, conf, keys);
      if (address != null) {
    	  
    	// 将address封装成InetSocketAddress,得到isa
        InetSocketAddress isa = NetUtils.createSocketAddr(address);
        if (isa.isUnresolved()) {
          LOG.warn("Namenode for " + nsId +
                   " remains unresolved for ID " + nnId +
                   ".  Check your hdfs-site.xml file to " +
                   "ensure namenodes are configured properly.");
        }
        
        // 将nnId->InetSocketAddress的对应关系放入到Map中
        ret.put(nnId, isa);
      }
    }
    return ret;
  }
        它通过参数获取dfs.ha.namenodes.nsId获取到NameNodeId的集合nnIds,然后针对每个NameNode,根据keys获取address,这keys传递进来的就是dfs.namenode.servicerpc-address、dfs.namenode.rpc-address,也就是优先取前一个参数,前一个取不到的话,再取第二个参数,然后将address封装成InetSocketAddress,得到isa,将nnId->InetSocketAddress的对应关系放入到Map中,最终返回给上层应用。

        至此,从配置信息conf中获取nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap就分析完了。下面,我们再看下初始化的重点:调用doRefreshNamenodes()方法执行集合newAddressMap中的刷新。代码如下:

  private void doRefreshNamenodes(
      Map<String, Map<String, InetSocketAddress>> addrMap) throws IOException {
    
	// 确保当前线程在refreshNamenodesLock上拥有互斥锁
	assert Thread.holdsLock(refreshNamenodesLock);

	// 定义三个集合,分别为待刷新的toRefresh、待添加的toAdd和待移除的toRemove
    Set<String> toRefresh = Sets.newLinkedHashSet();
    Set<String> toAdd = Sets.newLinkedHashSet();
    Set<String> toRemove;
    
    // 使用synchronized关键字在当前对象上获得互斥锁
    synchronized (this) {
      // Step 1. For each of the new nameservices, figure out whether
      // it's an update of the set of NNs for an existing NS,
      // or an entirely new nameservice.
      // 第一步,针对所有新的nameservices中的每个nameservice,
      // 确认它是一个已存在nameservice中的被更新了的NN集合,还是完全的一个新的nameservice
      // 判断的依据就是对应nameserviceId是否在bpByNameserviceId结合中存在
    	
      // 循环addrMap,放入待添加或者待刷新集合
      for (String nameserviceId : addrMap.keySet()) {
        
    	// 如果bpByNameserviceId结合中存在nameserviceId,加入待刷新集合toRefresh,否则加入到待添加集合toAdd
        if (bpByNameserviceId.containsKey(nameserviceId)) {
          toRefresh.add(nameserviceId);
        } else {
          toAdd.add(nameserviceId);
        }
      }
      
      // Step 2. Any nameservices we currently have but are no longer present
      // need to be removed.
      // 第二步,删除所有我们目前拥有但是现在不再需要的,也就是bpByNameserviceId中存在,而配置信息addrMap中没有的
      
      // 加入到待删除集合toRemove
      toRemove = Sets.newHashSet(Sets.difference(
          bpByNameserviceId.keySet(), addrMap.keySet()));
      
      // 验证,待刷新集合toRefresh的大小与待添加集合toAdd的大小必须等于配置信息addrMap中的大小
      assert toRefresh.size() + toAdd.size() ==
        addrMap.size() :
          "toAdd: " + Joiner.on(",").useForNull("<default>").join(toAdd) +
          "  toRemove: " + Joiner.on(",").useForNull("<default>").join(toRemove) +
          "  toRefresh: " + Joiner.on(",").useForNull("<default>").join(toRefresh);

      
      // Step 3. Start new nameservices
      // 第三步,启动所有新的nameservices
      if (!toAdd.isEmpty()) {// 待添加集合toAdd不为空
    	
        LOG.info("Starting BPOfferServices for nameservices: " +
            Joiner.on(",").useForNull("<default>").join(toAdd));
      
        // 针对待添加集合toAdd中的每个nameserviceId,做以下处理:
        for (String nsToAdd : toAdd) {
          
          // 从addrMap中根据nameserviceId获取对应Socket地址InetSocketAddress,创建集合addrs
          ArrayList<InetSocketAddress> addrs =
            Lists.newArrayList(addrMap.get(nsToAdd).values());
          
          // 根据addrs创建BPOfferService
          BPOfferService bpos = createBPOS(addrs);
          
          // 将nameserviceId->BPOfferService的对应关系添加到集合bpByNameserviceId中
          bpByNameserviceId.put(nsToAdd, bpos);
          
          // 将BPOfferService添加到集合offerServices中
          offerServices.add(bpos);
        }
      }
      
      // 启动所有BPOfferService,实际上是通过调用它的start()方法启动
      startAll();
    }

    // Step 4. Shut down old nameservices. This happens outside
    // of the synchronized(this) lock since they need to call
    // back to .remove() from another thread
    // 第4步,停止所有旧的nameservices。这个是发生在synchronized代码块外面的,是因为它们需要回调另外一个线程的remove()方法
    
    if (!toRemove.isEmpty()) {
      LOG.info("Stopping BPOfferServices for nameservices: " +
          Joiner.on(",").useForNull("<default>").join(toRemove));
      
      // 遍历待删除集合toRemove中的每个nameserviceId
      for (String nsToRemove : toRemove) {
        
    	// 根据nameserviceId从集合bpByNameserviceId中获取BPOfferService
    	BPOfferService bpos = bpByNameserviceId.get(nsToRemove);
    	
    	// 调用BPOfferService的stop()和join()方法停止服务
        bpos.stop();
        bpos.join();
        // they will call remove on their own
        // 它们会调用本身的remove()方法
      }
    }
    
    // Step 5. Update nameservices whose NN list has changed
    // 第5步,更新NN列表已变化的nameservices
    if (!toRefresh.isEmpty()) {// 待更新集合toRefresh不为空时
      LOG.info("Refreshing list of NNs for nameservices: " +
          Joiner.on(",").useForNull("<default>").join(toRefresh));
      
      // 遍历待更新集合toRefresh中的每个nameserviceId
      for (String nsToRefresh : toRefresh) {
    	  
    	// 根据nameserviceId从集合bpByNameserviceId中取出对应的BPOfferService
        BPOfferService bpos = bpByNameserviceId.get(nsToRefresh);
        
        // 根据BPOfferService从配置信息addrMap中取出NN的Socket地址InetSocketAddress,形成列表addrs
        ArrayList<InetSocketAddress> addrs =
          Lists.newArrayList(addrMap.get(nsToRefresh).values());
        
        // 调用BPOfferService的refreshNNList()方法根据addrs刷新NN列表
        bpos.refreshNNList(addrs);
      }
    }
  }
        整个doRefreshNamenodes()方法比较长,但是主体逻辑很清晰,主要分五大步骤,分别如下:

        1、第一步,针对nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap中每个nameserviceid,确认它是一个完全新加的nameservice,还是一个其NameNode列表被更新的nameservice,分别加入待添加toAdd和待刷新toRefresh集合;

        2、第二步,针对newAddressMap中没有,而目前DataNode内存bpByNameserviceId中存在的nameservice,需要删除,添加到待删除toRemove集合;

        3、第三步,处理待添加toAdd集合,启动所有新的nameservices:根据addrs创建BPOfferService,维护BPOfferService相关映射集合,然后启动所有的BPOfferService;

        4、第四步,处理待删除toRemove集合,停止所有旧的nameservices;

        5、第五步,处理待刷新toRefresh集合,更新NN列表已变化的nameservices。

        对,就是这么简单,将需要处理的nameservice分别加入到不同的集合,然后按照添加、删除、更新的顺序针对处理类型相同的nameservice一并处理即可。

        接下来,我们分别研究下每一步的细节:

        1、第一步,针对nameserviceid->{namenode名称->InetSocketAddress}的映射集合newAddressMap中每个nameserviceid,确认它是一个完全新加的nameservice,还是一个其NameNode列表被更新的nameservice,分别加入待添加toAdd和待刷新toRefresh集合;

        它的处理思路是,循环addrMap中每个nameserviceid,放入待添加toAdd或者待刷新toRefresh集合;如果bpByNameserviceId结合中存在nameserviceId,加入待刷新集合toRefresh,否则加入到待添加集合toAdd。

        2、第二步,针对newAddressMap中没有,而目前DataNode内存bpByNameserviceId中存在的nameservice,需要删除,添加到待删除toRemove集合;

        它的处理思路是:利用Sets的difference()方法,比较bpByNameserviceId和addrMap两个集合的keySet,找出bpByNameserviceId中存在,但是addrMap中不存在的nameserviceid,生成待删除集合toRemove。

        3、第三步,处理待添加toAdd集合,启动所有新的nameservices:根据addrs创建BPOfferService,维护BPOfferService相关映射集合,然后启动所有的BPOfferService;

        这一步针对待添加集合toAdd中的每个nameserviceId,做以下处理:

              3.1、从addrMap中根据nameserviceId获取对应Socket地址InetSocketAddress,创建集合addrs;

              3.2、根据addrs创建BPOfferService实例bpos;

              3.3、将nameserviceId->BPOfferService的对应关系添加到集合bpByNameserviceId中

              3.4、将BPOfferService添加到集合offerServices中;

        最后,调用startAll()方法启动所有BPOfferService,实际上是通过调用它的start()方法启动。

        其中,创建BPOfferService实例bpos时,BPOfferService的构造方法如下:

  // 构造方法
  BPOfferService(List<InetSocketAddress> nnAddrs, DataNode dn) {
    Preconditions.checkArgument(!nnAddrs.isEmpty(),
        "Must pass at least one NN.");
    this.dn = dn;

    // 遍历nnAddrs,为每个namenode添加一个构造的BPServiceActor线城实例,加入到bpServices列表
    for (InetSocketAddress addr : nnAddrs) {
      this.bpServices.add(new BPServiceActor(addr, this));
    }
  }
        它实际上是遍历nnAddrs,为每个namenode添加一个构造的BPServiceActor线城实例,加入到bpServices列表。
        而调用startAll()方法启动所有BPOfferService时,执行的代码如下:

  synchronized void startAll() throws IOException {
    try {
      UserGroupInformation.getLoginUser().doAs(
          new PrivilegedExceptionAction<Object>() {
            @Override
            public Object run() throws Exception {
            	
              // 遍历offerServices,启动所有的BPOfferService
              for (BPOfferService bpos : offerServices) {
                bpos.start();
              }
              return null;
            }
          });
    } catch (InterruptedException ex) {
      IOException ioe = new IOException();
      ioe.initCause(ex.getCause());
      throw ioe;
    }
  }
        它会遍历offerServices,启动所有的BPOfferService,而BPOfferService的启动,实际上就是将其所持有的每个NameNode对应的BPServiceActor线程启动,代码如下:

  //This must be called only by blockPoolManager
  void start() {
    for (BPServiceActor actor : bpServices) {
      actor.start();
    }
  }

        4、第四步,处理待删除toRemove集合,停止所有旧的nameservices;

        在这一步中,遍历待删除集合toRemove中的每个nameserviceId:

               4.1、根据nameserviceId从集合bpByNameserviceId中获取BPOfferService;

               4.2、调用BPOfferService的stop()和join()方法停止服务,它们会调用本身的remove()方法;

        而BPOfferService的stop()和join()方法,则是依次调用BPOfferService所包含的所有BPServiceActor线程的stop()和join()方法,代码如下:

  //This must be called only by blockPoolManager.
  void stop() {
    for (BPServiceActor actor : bpServices) {
      actor.stop();
    }
  }
  
  //This must be called only by blockPoolManager
  void join() {
    for (BPServiceActor actor : bpServices) {
      actor.join();
    }
  }

        5、第五步,处理待刷新toRefresh集合,更新NN列表已变化的nameservices;

        在最后一步中,遍历待更新集合toRefresh中的每个nameserviceId:

               5.1、根据nameserviceId从集合bpByNameserviceId中取出对应的BPOfferService;

               5.2、根据BPOfferService从配置信息addrMap中取出NN的Socket地址InetSocketAddress,形成列表addrs;

               5.3、调用BPOfferService的refreshNNList()方法根据addrs刷新NN列表。

        好了,HDFS心跳相关数据结构的初始化已分析完毕,至此,涉及到每个命名空间服务中每个NameNode相关的BPServiceActor线程均已启动,它是真正干活的苦力,真正的底层劳动人民啊!至于它是怎么运行来完成HDFS心跳的,我们下一节再分析吧!





相关文章
|
6月前
|
Cloud Native Go
GO语言初始化数据结构的方法你知道吗?
GO语言初始化数据结构的方法你知道吗?
|
3月前
|
存储 API
milvus insert api的数据结构源码分析
milvus insert api的数据结构源码分析
831 6
milvus insert api的数据结构源码分析
|
9月前
|
存储 算法 C语言
【数据结构】TopK,堆排序, --堆的初始化与应用
相信经过上一阶段的学习(二叉树概念)大家都对二叉树有了一个初步的印象,接下里我们将介绍一下二叉树在内存中一般如何存储.
79 0
|
10月前
|
C语言
【数据结构】链栈的基本操作C语言完整代码(初始化,判栈空,入栈,出栈,取栈顶元素,求栈长)
【数据结构】链栈的基本操作C语言完整代码(初始化,判栈空,入栈,出栈,取栈顶元素,求栈长)
261 0
|
10月前
|
存储 大数据
大数据数据存储的分布式文件系统的HDFS的核心机制理解的心跳机制
在 Hdfs 中,数据的复制和原理是基于块的分布式存储。
64 0
|
12月前
|
存储 算法 安全
【数据结构】顺序栈和链栈的基本操作(定义,初始化, 入栈,出栈,取栈顶元素,遍历,置空)
【数据结构】顺序栈和链栈的基本操作(定义,初始化, 入栈,出栈,取栈顶元素,遍历,置空)
965 0
|
存储 算法
二叉树的初始化·数据结构
二叉树是什么? 二叉树(Binary tree)是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。二叉树特点是每个节点最多只能有两棵子树,且有左右之分
201 0
|
存储 算法 Java
《恋上数据结构第1季》哈希表介绍以及从源码分析哈希值计算
《恋上数据结构第1季》哈希表介绍以及从源码分析哈希值计算
106 0
《恋上数据结构第1季》哈希表介绍以及从源码分析哈希值计算
|
存储 C++
数据结构(C++语言版)实现顺序栈的创建,初始化,赋值随机数,入栈,出栈,获取栈顶元素,输出
数据结构(C++语言版)实现顺序栈的创建,初始化,赋值随机数,入栈,出栈,获取栈顶元素,输出
337 1
数据结构(C++语言版)实现顺序栈的创建,初始化,赋值随机数,入栈,出栈,获取栈顶元素,输出
|
存储 NoSQL Unix
Redis 源码分析客户端数据结构(serverDb)
数据库存储在 redisDb 结构中,而服务端 redisServer 结构中保存着 redisDb 对象和个数,个数可以在配置文件中进行更新。
243 0
Redis 源码分析客户端数据结构(serverDb)