AI训练师入行指南(五):模型评估
本文从珠宝鉴定类比出发,探讨AI模型从训练到优化的全流程。首先介绍模型评估的四大核心指标:准确率、精确率与召回率、F1-Score及AUC-ROC,帮助明确模型性能。接着分析阈值调节、正则化与集成学习等调优方法的实际应用,如支付宝动态人脸识别和腾讯金融风控系统。此外,针对GPT-4o、Stable Diffusion和滴滴ETA模型的具体案例,展示参数微调与审美争议解决策略。最后提供避坑指南,强调数据泄漏、过拟合和冷启动问题的应对之道,总结模型评估应以商业价值、伦理规范和用户体验为导向,确保AI模型真正成为“智能珍宝”。