ZooKeeper Watch Java API浅析getData

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,182元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介:         Watch是ZooKeeper中非常重要的一个机制,它可以监控ZooKeeper中节点的变化情况,告知客户端。下面,我们以代码为例来分析Watch在ZooKeeper中是如何实现的。

        Watch是ZooKeeper中非常重要的一个机制,它可以监控ZooKeeper中节点的变化情况,告知客户端。下面,我们以代码为例来分析Watch在ZooKeeper中是如何实现的。ZooKeeper中一共由三种方法可以实现Watch,分别为getData、exists和getChildren,今天我们先来看下getData()方法:

        1、getData()

import java.io.IOException;

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.ZooDefs.Ids;

public class TestZooKeeperWatcher {

	public static void main(String[] args) {

		ZooKeeper zk = null;
		try {

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			System.out.println("开始连接ZooKeeper...");

			// 创建与ZooKeeper服务器的连接zk
			String address = "192.168.1.226:2181";
			int sessionTimeout = 3000;
			zk = new ZooKeeper(address, sessionTimeout, new Watcher() {
				// 监控所有被触发的事件
				public void process(WatchedEvent event) {
					if (event.getType() == null || "".equals(event.getType())) {
						return;
					}
					System.out.println("已经触发了" + event.getType() + "事件!");
				}
			});

			System.out.println("ZooKeeper连接创建成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			// 创建根目录节点
			// 路径为/tmp_root_path
			// 节点内容为字符串"我是根目录/tmp_root_path"
			// 创建模式为CreateMode.PERSISTENT
			System.out.println("开始创建根目录节点/tmp_root_path...");
			zk.create("/tmp_root_path", "我是根目录/tmp_root_path".getBytes(),
					Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
			System.out.println("根目录节点/tmp_root_path创建成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			// 创建第一个子目录节点
			// 路径为/tmp_root_path/childPath1
			// 节点内容为字符串"我是第一个子目录/tmp_root_path/childPath1"
			// 创建模式为CreateMode.PERSISTENT
			System.out.println("开始创建第一个子目录节点/tmp_root_path/childPath1...");
			zk.create("/tmp_root_path/childPath1",
					"我是第一个子目录/tmp_root_path/childPath1".getBytes(),
					Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
			System.out.println("第一个子目录节点/tmp_root_path/childPath1创建成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			// 创建第二个子目录节点
			// 路径为/tmp_root_path/childPath2
			// 节点内容为字符串"我是第二个子目录/tmp_root_path/childPath2"
			// 创建模式为CreateMode.PERSISTENT
			System.out.println("开始创建第二个子目录节点/tmp_root_path/childPath2...");
			zk.create("/tmp_root_path/childPath2",
					"我是第二个子目录/tmp_root_path/childPath2".getBytes(),
					Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
			System.out.println("第二个子目录节点/tmp_root_path/childPath2创建成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			// 获取第二个子目录节点/tmp_root_path/childPath2节点数据
			System.out.println("开始获取第二个子目录节点/tmp_root_path/childPath2节点数据...");
			System.out.println(new String(zk.getData(
					"/tmp_root_path/childPath2", true, null)));
			System.out.println("第二个子目录节点/tmp_root_path/childPath2节点数据获取成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			// 修改第一个子目录节点/tmp_root_path/childPath1数据
			System.out.println("开始修改第一个子目录节点/tmp_root_path/childPath1数据...");
			zk.setData("/tmp_root_path/childPath1",
					"我是修改数据后的第一个子目录/tmp_root_path/childPath1".getBytes(), -1);
			System.out.println("修改第一个子目录节点/tmp_root_path/childPath1数据成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			// 修改第二个子目录节点/tmp_root_path/childPath2数据
			System.out.println("开始修改第二个子目录节点/tmp_root_path/childPath2数据...");
			zk.setData("/tmp_root_path/childPath2",
					"我是修改数据后的第二个子目录/tmp_root_path/childPath2".getBytes(), -1);
			System.out.println("修改第二个子目录节点/tmp_root_path/childPath2数据成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			// 删除第一个子目录节点
			System.out.println("开始删除第一个子目录节点/tmp_root_path/childPath1...");
			zk.delete("/tmp_root_path/childPath1", -1);
			System.out.println("第一个子目录节点/tmp_root_path/childPath1删除成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			// 删除第二个子目录节点
			System.out.println("开始删除第二个子目录节点/tmp_root_path/childPath2...");
			zk.delete("/tmp_root_path/childPath2", -1);
			System.out.println("第二个子目录节点/tmp_root_path/childPath2删除成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

			// 删除根目录节点
			System.out.println("开始删除根目录节点/tmp_root_path...");
			zk.delete("/tmp_root_path", -1);
			System.out.println("根目录节点/tmp_root_path删除成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");

		} catch (IOException | KeeperException | InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		} finally {
			// 关闭连接
			if (zk != null) {
				try {
					zk.close();
					System.out.println("释放ZooKeeper连接成功!");

				} catch (InterruptedException e) {
					// TODO Auto-generated catch block
					e.printStackTrace();
				}
			}
		}

	}
}
        通过以上示例可以看出,我们创建了一个根节点/tmp_root_path,并且在这个根节点下面创建了两个平级的子节点/tmp_root_path/childPath1和/tmp_root_path/childPath2,而我们中间加了一段代码,获取第二个子目录节点/tmp_root_path/childPath2节点数据调用zk的getData()方法时,第二个参数设置为true,即为监控第二个子节点/tmp_root_path/childPath2,执行结果如下:

...
...
...
...
开始连接ZooKeeper...
ZooKeeper连接创建成功!
已经触发了None事件!
...
...
...
...
开始创建根目录节点/tmp_root_path...
根目录节点/tmp_root_path创建成功!
...
...
...
...
开始创建第一个子目录节点/tmp_root_path/childPath1...
第一个子目录节点/tmp_root_path/childPath1创建成功!
...
...
...
...
...
...
...
...
开始创建第二个子目录节点/tmp_root_path/childPath2...
第二个子目录节点/tmp_root_path/childPath2创建成功!
...
...
...
...
开始获取第二个子目录节点/tmp_root_path/childPath2节点数据...
我是第二个子目录/tmp_root_path/childPath2
第二个子目录节点/tmp_root_path/childPath2节点数据获取成功!
...
...
...
...
开始修改第一个子目录节点/tmp_root_path/childPath1数据...
修改第一个子目录节点/tmp_root_path/childPath1数据成功!
...
...
...
...
开始修改第二个子目录节点/tmp_root_path/childPath2数据...
已经触发了NodeDataChanged事件!
修改第二个子目录节点/tmp_root_path/childPath2数据成功!
...
...
...
...
开始删除第一个子目录节点/tmp_root_path/childPath1...
第一个子目录节点/tmp_root_path/childPath1删除成功!
...
...
...
...
开始删除第二个子目录节点/tmp_root_path/childPath2...
第二个子目录节点/tmp_root_path/childPath2删除成功!
...
...
...
...
开始删除根目录节点/tmp_root_path...
根目录节点/tmp_root_path删除成功!
...
...
...
...
释放ZooKeeper连接成功!
        可以发现,修改第二个子节点/tmp_root_path/childPath2数据时,触发了NodeDataChanged事件,而对应修改第一个子目录节点/tmp_root_path/childPath1数据,并没有触发该事件,并且,删除第二个子节点/tmp_root_path/childPath2时也没有触发!
        而当我们屏蔽到修改第二个子节点/tmp_root_path/childPath2数据相关代码时,屏蔽掉的部分和执行结果如下:

//			// 修改第二个子目录节点/tmp_root_path/childPath2数据
//			System.out.println("开始修改第二个子目录节点/tmp_root_path/childPath2数据...");
//			zk.setData("/tmp_root_path/childPath2",
//					"我是修改数据后的第二个子目录/tmp_root_path/childPath2".getBytes(), -1);
//			System.out.println("修改第二个子目录节点/tmp_root_path/childPath2数据成功!");
//
//			Thread.currentThread().sleep(1000l);
//
//			System.out.println("...");
//			System.out.println("...");
//			System.out.println("...");
//			System.out.println("...");
...
...
...
...
开始连接ZooKeeper...
ZooKeeper连接创建成功!
已经触发了None事件!
...
...
...
...
开始创建根目录节点/tmp_root_path...
根目录节点/tmp_root_path创建成功!
...
...
...
...
开始创建第一个子目录节点/tmp_root_path/childPath1...
第一个子目录节点/tmp_root_path/childPath1创建成功!
...
...
...
...
...
...
...
...
开始创建第二个子目录节点/tmp_root_path/childPath2...
第二个子目录节点/tmp_root_path/childPath2创建成功!
...
...
...
...
开始获取第二个子目录节点/tmp_root_path/childPath2节点数据...
我是第二个子目录/tmp_root_path/childPath2
第二个子目录节点/tmp_root_path/childPath2节点数据获取成功!
...
...
...
...
开始修改第一个子目录节点/tmp_root_path/childPath1数据...
修改第一个子目录节点/tmp_root_path/childPath1数据成功!
...
...
...
...
开始删除第一个子目录节点/tmp_root_path/childPath1...
第一个子目录节点/tmp_root_path/childPath1删除成功!
...
...
...
...
开始删除第二个子目录节点/tmp_root_path/childPath2...
已经触发了NodeDeleted事件!
第二个子目录节点/tmp_root_path/childPath2删除成功!
...
...
...
...
开始删除根目录节点/tmp_root_path...
根目录节点/tmp_root_path删除成功!
...
...
...
...
释放ZooKeeper连接成功!
        执行结果显而易见,删除第二个子节点/tmp_root_path/childPath2时触发了NodeDataChanged事件,但是修改第一个子节点和删除第一个子节点并没有触发!

        我们再做一个变更,修改第二个子节点/tmp_root_path/childPath2两次,那么执行结果如何呢?添加的代码及执行结果如下:

			// 第二次修改第二个子目录节点/tmp_root_path/childPath2数据
			System.out.println("开始第二次修改第二个子目录节点/tmp_root_path/childPath2数据...");
			zk.setData("/tmp_root_path/childPath2",
					"我是第二次修改数据后的第二个子目录/tmp_root_path/childPath2".getBytes(), -1);
			System.out.println("第二次修改第二个子目录节点/tmp_root_path/childPath2数据成功!");

			Thread.currentThread().sleep(1000l);

			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
			System.out.println("...");
...
...
...
...
开始连接ZooKeeper...
ZooKeeper连接创建成功!
已经触发了None事件!
...
...
...
...
开始创建根目录节点/tmp_root_path...
根目录节点/tmp_root_path创建成功!
...
...
...
...
开始创建第一个子目录节点/tmp_root_path/childPath1...
第一个子目录节点/tmp_root_path/childPath1创建成功!
...
...
...
...
...
...
...
...
开始创建第二个子目录节点/tmp_root_path/childPath2...
第二个子目录节点/tmp_root_path/childPath2创建成功!
...
...
...
...
开始获取第二个子目录节点/tmp_root_path/childPath2节点数据...
我是第二个子目录/tmp_root_path/childPath2
第二个子目录节点/tmp_root_path/childPath2节点数据获取成功!
...
...
...
...
开始修改第一个子目录节点/tmp_root_path/childPath1数据...
修改第一个子目录节点/tmp_root_path/childPath1数据成功!
...
...
...
...
开始修改第二个子目录节点/tmp_root_path/childPath2数据...
已经触发了NodeDataChanged事件!
修改第二个子目录节点/tmp_root_path/childPath2数据成功!
...
...
...
...
开始第二次修改第二个子目录节点/tmp_root_path/childPath2数据...
第二次修改第二个子目录节点/tmp_root_path/childPath2数据成功!
...
...
...
...
开始删除第一个子目录节点/tmp_root_path/childPath1...
第一个子目录节点/tmp_root_path/childPath1删除成功!
...
...
...
...
开始删除第二个子目录节点/tmp_root_path/childPath2...
第二个子目录节点/tmp_root_path/childPath2删除成功!
...
...
...
...
开始删除根目录节点/tmp_root_path...
根目录节点/tmp_root_path删除成功!
...
...
...
...
释放ZooKeeper连接成功!
        仅仅是第一次修改第二个子节点/tmp_root_path/childPath2数据时触发了NodeDataChanged事件,第二次修改与删除均未触发!

        而当我们在第二次修改第二个子节点/tmp_root_path/childPath2数据前先获取一遍,并且watch设置为true,那么两次对第二个子节点/tmp_root_path/childPath2数据的修改均会触发NodeDataChanged事件,并且获取根目录节点数据时,也仅是监控根目录,其子目录的变化不会触发NodeDataChanged事件,读者可自行尝试!


        结论:

        getData()方法仅仅监控对应节点的一次数据变化,无论是数据修改还是删除!若要每次对应节点发生变化都被监测到,那么每次都得先调用getData()方法获取一遍数据!

相关文章
|
3天前
|
Java API 数据处理
Java新特性:使用Stream API重构你的数据处理
Java新特性:使用Stream API重构你的数据处理
|
10天前
|
Java 大数据 API
Java Stream API:现代集合处理与函数式编程
Java Stream API:现代集合处理与函数式编程
173 100
|
10天前
|
Java API 数据处理
Java Stream API:现代集合处理新方式
Java Stream API:现代集合处理新方式
170 101
|
10天前
|
并行计算 Java 大数据
Java Stream API:现代数据处理之道
Java Stream API:现代数据处理之道
168 101
|
13天前
|
安全 Java API
使用 Java 构建强大的 REST API 的四个基本技巧
本文结合探险领域案例,分享Java构建REST API的四大核心策略:统一资源命名、版本控制与自动化文档、安全防护及标准化异常处理,助力开发者打造易用、可维护、安全可靠的稳健API服务。
86 2
API 微服务
32 0
|
21天前
|
存储 数据可视化 Java
Java Stream API 的强大功能
Java Stream API 是 Java 8 引入的重要特性,它改变了集合数据的处理方式。通过声明式语法,开发者可以更简洁地进行过滤、映射、聚合等操作。Stream API 支持惰性求值和并行处理,提升了代码效率和可读性,是现代 Java 开发不可或缺的工具。
Java Stream API 的强大功能
|
2月前
|
运维 Cloud Native 应用服务中间件
阿里云微服务引擎 MSE 及 API 网关 2025 年 8 月产品动态
阿里云微服务引擎 MSE 面向业界主流开源微服务项目, 提供注册配置中心和分布式协调(原生支持 Nacos/ZooKeeper/Eureka )、云原生网关(原生支持Higress/Nginx/Envoy,遵循Ingress标准)、微服务治理(原生支持 Spring Cloud/Dubbo/Sentinel,遵循 OpenSergo 服务治理规范)能力。API 网关 (API Gateway),提供 APl 托管服务,覆盖设计、开发、测试、发布、售卖、运维监测、安全管控、下线等 API 生命周期阶段。帮助您快速构建以 API 为核心的系统架构.满足新技术引入、系统集成、业务中台等诸多场景需要。
193 15
|
2月前
|
安全 Java API
Java日期时间API:从Date到Java.time
本文深入解析了Java 8中引入的全新日期时间API,涵盖LocalDate、LocalTime、LocalDateTime、ZonedDateTime等核心类的使用,以及时间调整、格式化、时区处理和与旧API的互操作。通过实例对比,展示了新API在可变性、线程安全与易用性方面的显著优势,并提供迁移方案与实战技巧,助你掌握现代Java时间处理的最佳实践。
|
2月前
|
存储 NoSQL Java
Java Stream API:集合操作与并行处理
Stream API 是 Java 8 提供的集合处理工具,通过声明式编程简化数据操作。它支持链式调用、延迟执行和并行处理,能够高效实现过滤、转换、聚合等操作,提升代码可读性和性能。