boost中asio网络库多线程并发处理实现,以及asio在多线程模型中线程的调度情况和线程安全。

简介: 1、实现多线程方法: 其实就是多个线程同时调用io_service::run         for (int i = 0; i != m_nThreads; ++i)        {            boost::shared_ptr pTh(new boost::thread(   ...

1、实现多线程方法:

其实就是多个线程同时调用io_service::run

        for (int i = 0; i != m_nThreads; ++i)
        {
            boost::shared_ptr<boost::thread> pTh(new boost::thread(
                boost::bind(&boost::asio::io_service::run,&m_ioService)));
            m_listThread.push_back(pTh);
        }

2、多线程调度情况:

asio规定:只能在调用io_service::run的线程中才能调用事件完成处理器。

注:事件完成处理器就是你async_accept、async_write等注册的句柄,类似于回调的东西。

单线程:

如果只有一个线程调用io_service::run,根据asio的规定,事件完成处理器也只能在这个线程中执行。也就是说,你所有代码都在同一个线程中运行,因此变量的访问是安全的。

多线程:

如果有多个线程同时调用io_service::run以实现多线程并发处理。对于asio来说,这些线程都是平等的,没有主次之分。如果你投递的一个请求比如async_write完成时,asio将随机的激活调用io_service::run的线程。并在这个线程中调用事件完成处理器(async_write当时注册的句柄)。如果你的代码耗时较长,这个时候你投递的另一个async_write请求完成时,asio将不等待你的代码处理完成,它将在另外的一个调用io_service::run线程中,调用async_write当时注册的句柄。也就是说,你注册的事件完成处理器有可能同时在多个线程中调用。

当然你可以使用 boost::asio::io_service::strand让完成事件处理器的调用,在同一时间只有一个, 比如下面的的代码:

  socket_.async_read_some(boost::asio::buffer(buffer_),
      strand_.wrap(
        boost::bind(&connection::handle_read, shared_from_this(),
          boost::asio::placeholders::error,
          boost::asio::placeholders::bytes_transferred)));

...

boost::asio::io_service::strand strand_;

 

此时async_read_som完成后掉用handle_read时,必须等待其它handle_read调用完成时才能被执行(async_read_som引起的handle_read调用)。

      多线程调用时,还有一个重要的问题,那就是无序化。比如说,你短时间内投递多个async_write,那么完成处理器的调用并不是按照你投递async_write的顺序调用的。asio第一次调用完成事件处理器,有可能是第二次async_write返回的结果,也有可能是第3次的。使用strand也是这样的。strand只是保证同一时间只运行一个完成处理器,但它并不保证顺序。

 

代码测试:

服务器:

将下面的代码编译以后,使用cmd命令提示符下传人参数<IP> <port> <threads>调用

比如:test.exe 0.0.0.0 3005 10   

客服端 使用windows自带的telnet

cmd命令提示符:

telnet 127.0.0.1 3005

 

原理:客户端连接成功后,同一时间调用100次boost::asio::async_write给客户端发送数据,并且在完成事件处理器中打印调用序号,和线程ID。

核心代码:

    void start()
    {
        for (int i = 0; i != 100; ++i)
        {
            boost::shared_ptr<string> pStr(new string);
            *pStr = boost::lexical_cast<string>(boost::this_thread::get_id());
            *pStr += "\r\n";
            boost::asio::async_write(m_nSocket,boost::asio::buffer(*pStr),
                boost::bind(&CMyTcpConnection::HandleWrite,shared_from_this(),
                 boost::asio::placeholders::error,
                 boost::asio::placeholders::bytes_transferred,
                 pStr,i)
                );
        }
    }

//去掉 boost::mutex::scoped_lock lk(m_ioMutex); 效果更明显。

    void HandleWrite(const boost::system::error_code& error
        ,std::size_t bytes_transferred
        ,boost::shared_ptr<string> pStr,int nIndex)
    {
        if (!error)
        {
            boost::mutex::scoped_lock lk(m_ioMutex);
            cout << "发送序号=" << nIndex << ",线程id=" << boost::this_thread::get_id() << endl;
        }
        else
        {
            cout << "连接断开" << endl;
        }
    }

 

完整代码:

#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/asio.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <string>
#include <iostream>


using std::cout;
using std::endl;
using std::string;
using boost::asio::ip::tcp;


class CMyTcpConnection
    : public boost::enable_shared_from_this<CMyTcpConnection>
{
public:
    CMyTcpConnection(boost::asio::io_service &ser)
        :m_nSocket(ser)
    {
    }
    typedef boost::shared_ptr<CMyTcpConnection> CPMyTcpCon;


    static CPMyTcpCon CreateNew(boost::asio::io_service& io_service)
    {
        return CPMyTcpCon(new CMyTcpConnection(io_service));
    }


   
public:
    void start()
    {
        for (int i = 0; i != 100; ++i)
        {
            boost::shared_ptr<string> pStr(new string);
            *pStr = boost::lexical_cast<string>(boost::this_thread::get_id());
            *pStr += "\r\n";
            boost::asio::async_write(m_nSocket,boost::asio::buffer(*pStr),
                boost::bind(&CMyTcpConnection::HandleWrite,shared_from_this(),
                 boost::asio::placeholders::error,
                 boost::asio::placeholders::bytes_transferred,
                 pStr,i)
                );
        }
    }
    tcp::socket& socket()
    {
        return m_nSocket;
    }
private:
    void HandleWrite(const boost::system::error_code& error
        ,std::size_t bytes_transferred
        ,boost::shared_ptr<string> pStr,int nIndex)
    {
        if (!error)
        {
            boost::mutex::scoped_lock lk(m_ioMutex);
            cout << "发送序号=" << nIndex << ",线程id=" << boost::this_thread::get_id() << endl;
        }
        else
        {
            cout << "连接断开" << endl;
        }
    }
private:
    tcp::socket m_nSocket;
    boost::mutex m_ioMutex;
};


class CMyService
    : private boost::noncopyable
{
public:
    CMyService(string const &strIP,string const &strPort,int nThreads)
        :m_tcpAcceptor(m_ioService)
        ,m_nThreads(nThreads)
    {
        tcp::resolver resolver(m_ioService);
        tcp::resolver::query query(strIP,strPort);
        tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
        boost::asio::ip::tcp::endpoint endpoint = *resolver.resolve(query);
        m_tcpAcceptor.open(endpoint.protocol());
        m_tcpAcceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
        m_tcpAcceptor.bind(endpoint);
        m_tcpAcceptor.listen();


        StartAccept();
    }
    ~CMyService(){Stop();}
public:
    void Stop() 
    { 
        m_ioService.stop();
        for (std::vector<boost::shared_ptr<boost::thread>>::const_iterator it = m_listThread.cbegin();
            it != m_listThread.cend(); ++ it)
        {
            (*it)->join();
        }
    }
    void Start()
    {
        for (int i = 0; i != m_nThreads; ++i)
        {
            boost::shared_ptr<boost::thread> pTh(new boost::thread(
                boost::bind(&boost::asio::io_service::run,&m_ioService)));
            m_listThread.push_back(pTh);
        }
    }
private:
    void HandleAccept(const boost::system::error_code& error
        ,boost::shared_ptr<CMyTcpConnection> newConnect)
    {
        if (!error)
        {
            newConnect->start();
        }
        StartAccept();
    }


    void StartAccept()
    {
        CMyTcpConnection::CPMyTcpCon newConnect = CMyTcpConnection::CreateNew(m_tcpAcceptor.get_io_service());
        m_tcpAcceptor.async_accept(newConnect->socket(),
            boost::bind(&CMyService::HandleAccept, this,
            boost::asio::placeholders::error,newConnect));
    }
private:
    boost::asio::io_service m_ioService;
    boost::asio::ip::tcp::acceptor m_tcpAcceptor;
    std::vector<boost::shared_ptr<boost::thread>> m_listThread;
    std::size_t m_nThreads;
};


int main(int argc, char* argv[])
{
    try
    {
        if (argc != 4)
        {
            std::cerr << "<IP> <port> <threads>\n";
            return 1;
        }
        int nThreads = boost::lexical_cast<int>(argv[3]);
        CMyService mySer(argv[1],argv[2],nThreads);
        mySer.Start();
        getchar();
        mySer.Stop();
    }
    catch (std::exception& e)
    {
        std::cerr << "Exception: " << e.what() << "\n";
    }
    return 0;
}

 

 

测试发现和上面的理论是一致的,发送序号是乱的,线程ID也不是同一个。

 

asio多线程中线程的合理个数:

作为服务器,在不考虑省电的情况下,应该尽可能的使用cpu。也就是说,为了让cpu都忙起来,你的线程个数应该大于等于你电脑的cpu核心数(一个核心运行一个线程)。具体的值没有最优方案,大多数人使用cpu核心数*2 + 2的这种方案,但它不一定适合你的情况。

asio在windows xp等系统中的实现:

asio在windows下使用完成端口,如果你投递的请求没有完成,那么这些线程都在等待GetQueuedCompletionStatus的返回,也就是等待内核对象,此时线程是不占用cpu时间的。

目录
相关文章
|
10天前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
34 1
|
2月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
69 0
|
3月前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
62 1
|
3月前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
40 3
|
3月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
28 2
|
3月前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
44 2
|
3月前
|
Java 开发者
Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点
【10月更文挑战第20天】Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点,重点解析为何实现Runnable接口更具灵活性、资源共享及易于管理的优势。
49 1
|
3月前
|
安全 Java 开发者
Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用
本文深入解析了Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用。通过示例代码展示了如何正确使用这些方法,并分享了最佳实践,帮助开发者避免常见陷阱,提高多线程程序的稳定性和效率。
57 1
|
3月前
|
Java
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件成立时被唤醒,从而有效解决数据一致性和同步问题。本文通过对比其他通信机制,展示了 `wait()` 和 `notify()` 的优势,并通过生产者-消费者模型的示例代码,详细说明了其使用方法和重要性。
45 1
|
3月前
|
存储 前端开发 C++
C++ 多线程之带返回值的线程处理函数
这篇文章介绍了在C++中使用`async`函数、`packaged_task`和`promise`三种方法来创建带返回值的线程处理函数。
94 6

热门文章

最新文章