参照openRTSP写的一个RTSP client 加了一些注解

简介: #include "liveMedia.hh"  #include "BasicUsageEnvironment.hh"  #include "GroupsockHelper.hh"  UsageEnvironment* env;  portNumBits tunnelOverHTTPPortNum = 0;  const char * url="rtsp://127.

#include "liveMedia.hh"  
#include "BasicUsageEnvironment.hh"  
#include "GroupsockHelper.hh"  
UsageEnvironment* env;  
portNumBits tunnelOverHTTPPortNum = 0;  
const char * url="rtsp://127.0.0.1:1935/vod/Extremists.m4v";  
#if defined(__WIN32__) || defined(_WIN32)  
#define snprintf _snprintf  
#endif  
int main(int argc,const char ** argv)  
{  
    //创建BasicTaskScheduler对象  
    TaskScheduler* scheduler = BasicTaskScheduler::createNew();  
    //创建BisicUsageEnvironment对象  
    env = BasicUsageEnvironment::createNew(*scheduler);  
    //创建RTSPClient对象  
    RTSPClient * rtspClient= RTSPClient::createNew(*env);  
    //由RTSPClient对象向服务器发送OPTION消息并接受回应  
    char* optionsResponse=rtspClient->sendOptionsCmd(url);  
    delete [] optionsResponse;  
    //产生SDPDescription字符串(由RTSPClient对象向服务器发送DESCRIBE消息并接受回应,根据回应的信息产生SDPDescription字符串,其中包括视音频数据的协议和解码器类型)  
    char* sdpDescription =rtspClient->describeURL(url);  
    //创建MediaSession对象(根据SDPDescription在MediaSession中创建和初始化MediaSubSession子会话对象)  
    MediaSession* session = MediaSession::createNew(*env, sdpDescription);  
    delete[] sdpDescription;  
 
    MediaSubsessionIterator iter(*session);  
    MediaSubsession *subsession;  
    while ((subsession = iter.next()) != NULL) {  
        // Creates a "RTPSource" for this subsession. (Has no effect if it's  
        // already been created.)  Returns True iff this succeeds.  
        if (!subsession->initiate()) {  
            *env << "Unable to create receiver for "" << subsession->mediumName()  
                << "/" << subsession->codecName()  
                << "" subsession: " << env->getResultMsg() << "\n";  
        } else {  
            *env << "Created receiver for "" << subsession->mediumName()  
                << "/" << subsession->codecName()  
                << "" subsession (client ports " << subsession->clientPortNum()  
                << "-" << subsession->clientPortNum()+1 << ")\n";  
            if (subsession->rtpSource() != NULL) {  
                // Because we're saving the incoming data, rather than playing  
                // it in real time, allow an especially large time threshold  
                // (1 second) for reordering misordered incoming packets:  
                unsigned const thresh = 1000000; // 1 second  
                subsession->rtpSource()->setPacketReorderingThresholdTime(thresh);  
                // Set the RTP source's OS socket buffer size as appropriate - either if we were explicitly asked (using -B),  
                // or if the desired FileSink buffer size happens to be larger than the current OS socket buffer size.  
                // (The latter case is a heuristic, on the assumption that if the user asked for a large FileSink buffer size,  
                // then the input data rate may be large enough to justify increasing the OS socket buffer size also.)  
                int socketNum = subsession->rtpSource()->RTPgs()->socketNum();  
                unsigned curBufferSize = getReceiveBufferSize(*env, socketNum);  
                unsigned newBufferSize = setReceiveBufferTo(*env, socketNum, 100000);  
 
            }  
        }  
    }  
    //由RTSPClient对象向服务器发送SETUP消息并接受回应  
    iter.reset();  
    while ((subsession = iter.next()) != NULL) {  
        if (subsession->clientPortNum() == 0) continue; // port # was not set  
        if (!rtspClient->setupMediaSubsession(*subsession)) {  
            *env << "Failed to setup "" << subsession->mediumName()  
                << "/" << subsession->codecName()  
                << "" subsession: " << env->getResultMsg() << "\n";  
        } else {  
            *env << "Setup "" << subsession->mediumName()  
                << "/" << subsession->codecName()  
                << "" subsession (client ports " << subsession->clientPortNum()  
                << "-" << subsession->clientPortNum()+1 << ")\n";  
        }  
        if (subsession->rtpSource() != NULL) {  
            // Because we're saving the incoming data, rather than playing  
            // it in real time, allow an especially large time threshold  
            // (1 second) for reordering misordered incoming packets:  
            unsigned const thresh = 1000000; // 1 second  
            subsession->rtpSource()->setPacketReorderingThresholdTime(thresh);  
        }  
    }  
    iter.reset();  
    while ((subsession = iter.next()) != NULL) {  
        if (subsession->readSource() == NULL) continue; // was not initiated  
        char outFileName[1000];  
        static unsigned streamCounter = 0;  
        snprintf(outFileName, sizeof outFileName, "%s-%s-%d",  
            subsession->mediumName(),  
            subsession->codecName(), ++streamCounter);  
        FileSink* fileSink;  
        if (strcmp(subsession->mediumName(), "audio") == 0 &&  
            (strcmp(subsession->codecName(), "AMR") == 0 ||  
            strcmp(subsession->codecName(), "AMR-WB") == 0)) {  
                // For AMR audio streams, we use a special sink that inserts AMR frame hdrs:  
                fileSink = AMRAudioFileSink::createNew(*env, outFileName);  
        } else if (strcmp(subsession->mediumName(), "video") == 0 &&  
            (strcmp(subsession->codecName(), "H264") == 0)) {  
                // For H.264 video stream, we use a special sink that insert start_codes:  
                unsigned int num=0;  
                SPropRecord * sps=parseSPropParameterSets(subsession->fmtp_spropparametersets(),num);  
                fileSink = H264VideoFileSink::createNew(*env, outFileName,100000);  
                struct timeval tv={0,0};  
                unsigned char start_code[4] = {0x00, 0x00, 0x00, 0x01};  
                fileSink->addData(start_code, 4, tv);  
                fileSink->addData(sps[0].sPropBytes,sps[0].sPropLength,tv);  
                fileSink->addData(start_code, 4, tv);  
                fileSink->addData(sps[1].sPropBytes,sps[1].sPropLength,tv);  
                delete[] sps;  
        } else {  
            // Normal case:  
            fileSink = FileSink::createNew(*env, outFileName);  
        }  
        subsession->sink = fileSink;  
        subsession->sink->startPlaying(*(subsession->readSource()),NULL,NULL);  
    }  
    rtspClient->playMediaSession(*session, 0.0f, 0.0f, (float)1.0);  
    env->taskScheduler().doEventLoop(); // does not return  
    return 0; // only to prevent compiler warning  

目录
相关文章
|
自然语言处理 监控 搜索推荐
Elasticsearch的应用场景
Elasticsearch的应用场景
|
缓存 Java Maven
Maven配置多仓库无效?来看看这篇文章
Maven配置多仓库无效?来看看这篇文章
1743 0
Maven配置多仓库无效?来看看这篇文章
|
4月前
|
JSON 算法 Java
打造终端里的下载利器:Python实现可恢复式多线程下载器
在数字时代,大文件下载已成为日常需求。本文教你用Python打造专业级下载器,支持断点续传、多线程加速、速度限制等功能,显著提升终端下载体验。内容涵盖智能续传、多线程分块下载、限速控制及Rich库构建现代终端界面,助你从零构建高效下载工具。
268 1
|
4月前
|
存储 人工智能 前端开发
🔓AI赋能开源:如何借助MCP快速解锁开源项目并提交你的首个PR
本篇文章介绍了如何利用AI工具降低开源项目贡献门槛,加速从项目理解到代码提交的过程。通过GitDiagram工具,可将GitHub仓库转化为交互式架构图,清晰展示项目结构,如Dify项目的部署、前端、核心服务及外部集成等层次。接着,借助GitMCP工具,将项目转化为AI助手的知识库,实现精准代码导航与开发辅助。例如,在Cursor中配置MCP服务后,AI能快速定位文件并分析接口结构,大幅提升开发效率。尽管MCP存在token消耗等问题,但其生态发展已展现出AI在实际开发中的巨大潜力。
156 5
|
Web App开发 编解码 监控
RTSP协议探秘:从原理到C++实践,解锁实时流媒体传输之道
RTSP协议探秘:从原理到C++实践,解锁实时流媒体传输之道
4196 0
|
11月前
|
供应链 安全 分布式数据库
探索区块链技术:从原理到应用的全面解析
【10月更文挑战第22天】 本文旨在深入浅出地探讨区块链技术,一种近年来引起广泛关注的分布式账本技术。我们将从区块链的基本概念入手,逐步深入到其工作原理、关键技术特点以及在金融、供应链管理等多个领域的实际应用案例。通过这篇文章,读者不仅能够理解区块链技术的核心价值和潜力,还能获得关于如何评估和选择适合自己需求的区块链解决方案的实用建议。
505 0
|
Windows
QT源码拾贝6-11(qwindowswindow)
这篇文章深入探讨了Qt源码中与窗口激活相关的函数,QDebug运算符重载,vscode的变量提示,Windows常用类型名,获取所有窗体的方法,以及QSharedPointer智能指针的使用。
298 0
QT源码拾贝6-11(qwindowswindow)
|
人工智能 安全 物联网
智能家居的未来:物联网与AI的完美融合
本文深入探讨了物联网(IoT)和人工智能(AI)在智能家居领域的应用,并预测了未来技术的发展趋势。通过分析当前技术实现、面临的挑战以及潜在的解决方案,文章旨在为读者揭示一个更加智能、互联的家居生活蓝图。
335 1
|
网络协议 应用服务中间件 nginx
性能提升-如何设置Windows操作系统TIME_WAIT状态的TCP连接快速回收时间?
性能提升-如何设置Windows操作系统TIME_WAIT状态的TCP连接快速回收时间?
472 0
|
运维 Linux Shell
运维:Linux服务器崩了怎么办,快来看看这份”急救命令指南“吧!
当服务器出现问题,如崩溃、内存耗尽或CPU使用率过高时,运维工程师需要保持冷静,并通过一系列Shell命令来诊断和解决。首先,检查是否有异常SSH登录活动,查看`/etc/passwd`和`.bash_history`文件,以及用户最近的登录信息。接着,监控网络连接和端口,使用`netstat`和`lsof`命令找出资源占用高的进程,并查看进程启动时间和详细信息。同时,排查可能的恶意文件,检查定时任务和服务配置以确保没有异常启动项。最后,分析系统日志,如`/var/log`目录下的各种日志文件,找出潜在问题。通过这些步骤,可以有效定位和解决服务器故障。