pthread_mutex_init & 互斥锁pthread_mutex_t的使用

简介: pthread_mutex_init l         头文件: #include l         函数原型: int pthread_mutex_init(pthread_mutex_t *restrict mutex,const pthread_mutexattr_t *restrict attr); pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; l         函数作用: 该函数用于C函数的多线程编程中,互斥锁的初始化。

pthread_mutex_init

l         头文件:

#include <pthread.h>

l         函数原型:

int pthread_mutex_init(pthread_mutex_t *restrict mutex,const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

l         函数作用:

该函数用于C函数的多线程编程中,互斥锁的初始化。

pthread_mutex_init() 函数是以动态方式创建互斥锁的,参数attr指定了新建互斥锁的属性。如果参数attr为空,则使用默认的互斥锁属性,默认属性为快速互斥锁 。互斥锁的属性在创建锁的时候指定,在LinuxThreads实现中仅有一个锁类型属性,不同的锁类型在试图对一个已经被锁定的互斥锁加锁时表现不同。

pthread_mutexattr_init() 函数成功完成之后会返回零,其他任何返回值都表示出现了错误。

函数成功执行后,互斥锁被初始化为未锁住态。

l         互斥锁pthread_mutex_t的使用:

1. 互斥锁创建

有两种方法创建互斥锁,静态方式和动态方式。POSIX定义了一个宏PTHREAD_MUTEX_INITIALIZER来静态初始化互斥锁,方法如下:

pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIZER;

在LinuxThreads实现中,pthread_mutex_t是一个结构,而PTHREAD_MUTEX_INITIALIZER则是一个结构常量。

动态方式是采用pthread_mutex_init()函数来初始化互斥锁,API定义如下:

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr)

其中mutexattr用于指定互斥锁属性(见下),如果为NULL则使用缺省属性。

pthread_mutex_destroy ()用于注销一个互斥锁,API定义如下:

int pthread_mutex_destroy(pthread_mutex_t *mutex)

销毁一个互斥锁即意味着释放它所占用的资源,且要求锁当前处于开放状态。由于在Linux中,互斥锁并不占用任何资源,因此LinuxThreads中的 pthread_mutex_destroy()除了检查锁状态以外(锁定状态则返回EBUSY)没有其他动作。

2. 互斥锁属性

互斥锁的属性在创建锁的时候指定,在LinuxThreads实现中仅有一个锁类型属性,不同的锁类型在试图对一个已经被锁定的互斥锁加锁时表现不同。当前(glibc2.2.3,linuxthreads0.9)有四个值可供选择:

* PTHREAD_MUTEX_TIMED_NP,这是缺省值,也就是普通锁。当一个线程加锁以后,其余请求锁的线程将形成一个等待队列,并在解锁后按优先级获得锁。这种锁策略保证了资源分配的公平性。

* PTHREAD_MUTEX_RECURSIVE_NP,嵌套锁,允许同一个线程对同一个锁成功获得多次,并通过多次unlock解锁。如果是不同线程请求,则在加锁线程解锁时重新竞争。

* PTHREAD_MUTEX_ERRORCHECK_NP,检错锁,如果同一个线程请求同一个锁,则返回EDEADLK,否则与PTHREAD_MUTEX_TIMED_NP类型动作相同。这样就保证当不允许多次加锁时不会出现最简单情况下的死锁。

* PTHREAD_MUTEX_ADAPTIVE_NP,适应锁,动作最简单的锁类型,仅等待解锁后重新竞争。

3. 锁操作

锁操作主要包括加锁 pthread_mutex_lock()、解锁pthread_mutex_unlock()和测试加锁pthread_mutex_trylock()三个,不论哪种类型的锁,都不可能被两个不同的线程同时得到,而必须等待解锁。对于普通锁和适应锁类型,解锁者可以是同进程内任何线程;而检错锁则必须由加锁者解锁才有效,否则返回EPERM;对于嵌套锁,文档和实现要求必须由加锁者解锁,但实验结果表明并没有这种限制,这个不同目前还没有得到解释。在同一进程中的线程,如果加锁后没有解锁,则任何其他线程都无法再获得锁。

int pthread_mutex_lock(pthread_mutex_t *mutex)

int pthread_mutex_unlock(pthread_mutex_t *mutex)

int pthread_mutex_trylock(pthread_mutex_t *mutex)

pthread_mutex_trylock()语义与pthread_mutex_lock()类似,不同的是在锁已经被占据时返回EBUSY而不是挂起等待。

原地址:http://blog.163.com/coffee_666666/blog/static/184691114201182125470/

目录
相关文章
|
6月前
|
存储 自然语言处理 数据库
【数据结构进阶】AVL树深度剖析 + 实现(附源码)
在深入探讨了AVL树的原理和实现后,我们不难发现,这种数据结构不仅优雅地解决了传统二叉搜索树可能面临的性能退化问题,还通过其独特的平衡机制,确保了在任何情况下都能提供稳定且高效的查找、插入和删除操作。
470 19
|
自然语言处理 机器人
ROS2教程 08 动作Action
本文是关于ROS2(机器人操作系统2)中动作(Action)机制的教程,详细介绍了动作的概念、ros2 action相关命令的使用,包括列出、发送目标、获取动作信息,并通过示例代码展示了如何创建动作服务端(Action Server)和客户端(Action Client),以及如何实现动作的执行、反馈和结果处理。
721 0
ROS2教程 08 动作Action
|
存储 Unix Linux
在Linux中,什么是管道?它是如何工作的?
在Linux中,什么是管道?它是如何工作的?
|
9月前
|
存储 运维 监控
Linux--深入理与解linux文件系统与日志文件分析
深入理解 Linux 文件系统和日志文件分析,对于系统管理员和运维工程师来说至关重要。文件系统管理涉及到文件的组织、存储和检索,而日志文件则记录了系统和应用的运行状态,是排查故障和维护系统的重要依据。通过掌握文件系统和日志文件的管理和分析技能,可以有效提升系统的稳定性和安全性。
209 7
|
Unix 编译器 Shell
CMake构建Makefile深度解析:从底层原理到复杂项目(一)
CMake构建Makefile深度解析:从底层原理到复杂项目
1504 0
|
算法 安全 C语言
【C 言专栏】C 语言中的多线程编程
【5月更文挑战第5天】本文探讨了C语言中的多线程编程,包括多线程概念、通过POSIX线程库和Windows线程库的实现方式、基本步骤(创建、执行、同步、销毁线程)、线程同步机制(互斥锁、条件变量、信号量)以及优点(提高性能、增强并发处理、改善用户体验)。同时,文章指出多线程编程面临的挑战如线程安全、死锁和资源竞争,并提及内存管理问题。通过案例分析和展望未来趋势,强调了掌握多线程编程在提升程序效率和应对复杂任务中的重要性。
543 0
【C 言专栏】C 语言中的多线程编程
|
存储 缓存 Dragonfly
微软开抢年收入上亿美元的 Redis 饭碗?开源性能遥遥领先的 Garnet:无需修改,Redis 客户端可直接接入
微软开源了高性能缓存系统Garnet,旨在挑战 Redis 和 Dragonfly。Garnet 基于 .NET8,提供高吞吐量、低延迟和跨平台支持。它支持 RESP 协议,允许大部分 Redis 客户端无缝迁移。Garnet 的特性包括多连接批量处理以提升扩展性和吞吐量,以及更好的延迟稳定性。适合于需要高性能缓存层来降低成本和提高应用性能的场景。Garnet 的集群模式允许动态键迁移和分片管理,且支持 TLS 和自定义扩展。其网络层设计减少了线程切换开销,存储层则具备丰富的 API 和事务支持。在基准测试中,Garnet 在吞吐量和延迟上优于 Redis 和 KeyDB,展现出优秀的扩展性。
806 0
微软开抢年收入上亿美元的 Redis 饭碗?开源性能遥遥领先的 Garnet:无需修改,Redis 客户端可直接接入
|
Unix Shell Linux
linux互斥锁(pthread_mutex)知识点总结
linux互斥锁(pthread_mutex)知识点总结
|
消息中间件 Java Kafka
springboot 如何保证Kafka顺序消费
【7月更文挑战第1天】在分布式消息系统中,消息的顺序性是一个重要的问题。Apache Kafka 提供了多种机制来确保消息的顺序消费,但需要根据具体的使用场景进行配置和设计。
620 0
|
SQL 关系型数据库 数据库
一文熟悉PolarDB-PG 分区表核心特性
在 PolarDB-PG 数据库中,分区表 (Partitioned Table) 使您能够将非常大的表分解为更小且更易于管理的部分,这个部分称为分区 (Partition) 。 每个分区都是一个独立的对象,具有自己的名称和可选的存储特性。本文首先简单的介绍了分区表策略以及它的优势特点,然后介绍了PolarDB-PG 分区表支持的查询优化特性,最后介绍了分区表上的本地索引和全局索引,从而帮助用户对PolarDB-PG 分区表有一个全面的了解。