linux下uboot kernel操作cpu寄存器

简介: 大多数的内核里面都有会对GPIO的操作,而且内核里面对GPIO进行配置也很方便,要什么功能就配置成什么就可以了。 还有一些寄存器是内核没有配置到的,但是我们要操作怎么办,内核里面也定义了相关的接口函数。

大多数的内核里面都有会对GPIO的操作,而且内核里面对GPIO进行配置也很方便,要什么功能就配置成什么就可以了。

还有一些寄存器是内核没有配置到的,但是我们要操作怎么办,内核里面也定义了相关的接口函数。

在u-boot中操作某个寄存器:

 

[cpp]  view plain  copy
 
 print?在CODE上查看代码片派生到我的代码片
  1. reg = readl(IOMUXC_BASE_ADDR + IOMUXC_REG_GPR1);  
  2. reg &= ~IOMUXC_REG_GPR1_ACTCS0_MASK;  
  3. writel(reg, IOMUXC_BASE_ADDR + IOMUXC_REG_GPR1);  

其中IOMUXC_BASE_ADDR是物理地址,跟踪代码发现writel操作如下:

 

#define writel(v,a) __arch_putl(v,a)

#define __arch_putl(v,a) (*(volatile unsigned int *)(a) = (v))

所以在uboot里面配置寄存相当于是给物理地址直接赋值,volatile的意思是提醒编译器需要存储或读取这个变量的时候,都会直接从变量地址中读取数据

 

而在内核中,上面的写法是无法运行的,会提示虚拟地址错误。在内核中通常是通过虚拟地址来给物理地址赋值,所以需要将物理地址转换成虚拟地址

 

[cpp]  view plain  copy
 
 print?在CODE上查看代码片派生到我的代码片
  1. reg = __raw_readl(ioremap(IOMUXC_BASE_ADDR + IOMUXC_REG_GPR1,4));  
  2. reg &= ~IOMUXC_REG_GPR1_ACTCS0_MASK;  
  3. reg &= ~IOMUXC_REG_GPR1_ADDRS0_MASK;  
  4. reg |= ((CS0_NORFLASH_SIZE | IOMUXC_REG_GPR1_ACTCS0));  
  5. __raw_writel(reg, ioremap(IOMUXC_BASE_ADDR + IOMUXC_REG_GPR1,4));  

这里的ioremap是将物理地址IOMUXC_BASE_ADDR转换得到对应的虚拟地址,4表示4个字节,即32位的地址。

 

u-boot下读写gpio:

与读写寄存器类似,u-boot下读写GPIO口是直接给GPIO赋值:

 

[cpp]  view plain  copy
 
 print?在CODE上查看代码片派生到我的代码片
  1. mxc_request_iomux(MX53_PIN_GPIO_8, IOMUX_CONFIG_ALT1);  
  2. mxc_iomux_set_pad(MX53_PIN_GPIO_8, 0x1E4);  
  3.   
  4. reg = readl(GPIO1_BASE_ADDR + 0x0);  
  5.    <span style="white-space:pre"> </span>reg |= 0x100;  
  6. writel(reg, GPIO1_BASE_ADDR + 0x0);  
  7.   
  8. // Set pin direction as output  
  9. reg = readl(GPIO1_BASE_ADDR + 0x4);  
  10. reg |= 0x100;  
  11. writel(reg, GPIO1_BASE_ADDR + 0x4);  


GPIO_8 是GPIO1_8,前面两个配置GPIO_8的功能。

 

查看datasheet可以看到GPIO1的地址配置

53F8_4000 GPIO data register (GPIO-1_DR) 32 R/W 0000_0000h 
53F8_4004 GPIO direction register (GPIO-1_GDIR) 32 R/W 0000_0000h 
53F8_4008 GPIO pad status register (GPIO-1_PSR) 32 R 0000_0000h 
53F8_400C GPIO interrupt configuration register1 (GPIO-1_ICR1) 32 R/W 0000_0000h 
53F8_4010 GPIO interrupt configuration register2 (GPIO-1_ICR2) 32 R/W 0000_0000h
53F8_4014 GPIO interrupt mask register (GPIO-1_IMR) 32 R/W 0000_0000h 
53F8_4018 GPIO interrupt status register (GPIO-1_ISR) 32 w1c 0000_0000h
53F8_401C GPIO edge select register (GPIO-1_EDGE_SEL) 32 R/W 0000_0000h 

 

可以看到它的数据寄存器的偏移地址是0x0,输入输出寄存器的偏移地址是0x4。而reg |= 0x100;是GPIO_8的所在的偏移,即(0x1 << 8)。

读取一个gpio的值,只需要读取它的状态寄存器就可以了,

reg = readl( GPIO1_BASE_ADDR + 0x08 );

if(reg & (0x1 << 8))

printf("it is high\n");

else

printf("it is low\n");

目录
相关文章
|
6月前
|
运维 Linux 虚拟化
Linux 查看 CPU 使用情况
在 Linux 系统中,查看 CPU 使用情况是性能分析和故障排查的重要环节。查看 CPU 使用情况,使用 top 命令或者 htop 命令来查看。
|
6月前
|
Ubuntu Linux 应用服务中间件
Linux使用cpulimit对CPU使用率进行限制
cpulimit是一款简单易用的CPU使用率限制工具,支持对特定程序或整个CPU使用率进行限制。可通过源安装(如`yum`或`apt-get`)或编译安装获取。使用时,可针对程序名、进程号或绝对路径设置CPU占用上限(如`cpulimit -e xmrig -l 60 -b`)。ROOT用户可限制所有进程,普通用户仅限于权限范围内进程。注意,CPU百分比基于实际核心数(单核100%,双核200%,依此类推)。
400 7
|
6月前
|
存储 缓存 Linux
Linux系统中如何查看CPU信息
本文介绍了查看CPU核心信息的方法,包括使用`lscpu`命令和读取`/proc/cpuinfo`文件。`lscpu`能快速提供逻辑CPU数量、物理核心数、插槽数等基本信息;而`/proc/cpuinfo`则包含更详细的配置数据,如核心ID和处理器编号。此外,还介绍了如何通过`lscpu`和`dmidecode`命令获取CPU型号、制造商及序列号,并解释了CPU频率与缓存大小的相关信息。最后,详细解析了`lscpu`命令输出的各项参数含义,帮助用户更好地理解CPU的具体配置。
720 8
|
8月前
|
缓存 安全 Linux
Linux系统查看操作系统版本信息、CPU信息、模块信息
在Linux系统中,常用命令可帮助用户查看操作系统版本、CPU信息和模块信息
1410 23
|
缓存 监控 Linux
在Linux中,如何看当前系统有几颗物理CPU和每颗CPU的核数?
在Linux中,如何看当前系统有几颗物理CPU和每颗CPU的核数?
|
10月前
|
缓存 监控 Linux
|
10月前
|
缓存 Linux
揭秘Linux内核:探索CPU拓扑结构
【10月更文挑战第26天】
225 1
|
10月前
|
缓存 运维 Linux
深入探索Linux内核:CPU拓扑结构探测
【10月更文挑战第18天】在现代计算机系统中,CPU的拓扑结构对性能优化和资源管理至关重要。了解CPU的核心、线程、NUMA节点等信息,可以帮助开发者和系统管理员更好地调优应用程序和系统配置。本文将深入探讨如何在Linux内核中探测CPU拓扑结构,介绍相关工具和方法。
191 0
|
存储 缓存 编译器
Linux kernel memory barriers 【ChatGPT】
Linux kernel memory barriers 【ChatGPT】
127 11
用QEMU模拟运行uboot从SD卡启动Linux
用QEMU模拟运行uboot从SD卡启动Linux