Efinix可编程芯片:可进一步推动人工智能技术发展

简介:

在 Efinix 公司联合创始人看来,他们研发的可编程芯片应该在正确的时间出现在了正确的地方。如今,工程师们正在努力将人工智能技术(特别是深度学习变体)“压榨”进芯片里,但是却一直受到成本和能耗的限制。

Efinix 公司总部位于美国加利福尼亚州圣克拉拉市,他们计划用一种全新的现场可编程门阵列(FPGA)技术来设计芯片,不仅芯片尺寸只有现在的四分之一,而且能耗只有传统芯片的一半,结构也没有过去那么复杂了。Sammy Cheung 是该公司联合创始人、总裁兼首席执行官,他表示,Efinix 公司把此技术称为量子可编程技术。过去,训练人工智能和深度学习需要依赖中央计算机和服务器产生大量数据,而现在,依靠这一系列优化功能组合,可以推动人工智能和深度学习更加轻松。

在过去的几十年时间里,现场可编程门阵列技术的基本架构一直没有任何变化。从高层角度来看,现场可编程门阵列技术的基本架构看起来就像是一个棋盘,交替的部分要么用于路由,要么用于逻辑判断。Tony Ngai 是现场可编程门阵列技术专家,他和Efinix 公司联合创始人 Cheung 共同提出了一个全新的理念:在摈弃了具有专用功能的每个电路板格(这些电路板格被称为可交换逻辑和路由处理器)的基础上,每一个电路板格都可以根据特定目的被编程。

在设计的传统现场可编程门阵列路由块时候,设计师往往希望它能够应对最糟糕的问题场景——最复杂的互连集合可能性。正因为如此,现代传统现场可编程门阵列需要一整套10-14个金属层才能实现所有的互连功能。这些金属层及其附带的绝缘层扮演了一个“寄生电容器”的角色,但由此带来的问题,就是对能耗的要求太高。

不过现在,Efinix 公司研发的量子可编程技术让每个现场可编程门阵列路由块的角色变得非常灵活,全新设计根本不需要去考虑应对最糟糕的问题场景。如果一个逻辑块需要特别复杂的路由,你需要做的,就是分配一个相邻的、额外的现场可编程门阵列路由块进行路由即可。这意味着,Efinix 量子系统本身体积会变得更小,而且它只需要七个金属层就能实现互连。随着金属层数量的减少,也大大降低了寄生电容器的功率消耗,同时也让Efinix 的可编程芯片集成到其他芯片架构的操作变得更加便捷,比如片上芯片系统(System-on-Chip )和应用型专用集成电路(ASIC)。

得益于上周获得了赛灵思、三星电子和香港X科技基金投资一笔 920 万美元融资,Efinix 公司计划从2018年开始,与合作伙伴一起生产新款芯片产品。有趣的是,给Efinix 公司投资的最多的竟然是现场可编程门阵列行业巨头赛灵思(Xilinx)。Salil Raje 是赛灵思公司软件即IP产品高级副总裁,他说道:“Efinix 公司的解决方案,可以解决很多应用问题,而这些问题,基本上使用当前的现场可编程门阵列芯片是无法解决的。”

Efinix 公司联合创始人 Cheung 补充说道:“我们不会与赛灵思公司竞争,相反,我们会携手拓展现场可编程门阵列芯片市场。”事实上,如今现场可编程门阵列芯片市场规模已经达到了 50 亿美元,而且还在快速增长,预计未来市场规模会突破 100 亿美元。



本文作者:天诺
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术介绍
【10月更文挑战第14天】 人工智能技术介绍
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
22小时前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
15 7
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度探索人工智能中的自然语言处理技术#### 一、
【10月更文挑战第28天】 本文旨在深入剖析人工智能领域中的自然语言处理(NLP)技术,探讨其发展历程、核心算法、应用现状及未来趋势。通过详尽的技术解读与实例分析,揭示NLP在智能交互、信息检索、内容理解等方面的变革性作用,为读者提供一幅NLP技术的全景图。 #### 二、
17 1
|
14天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
45 6
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的无限可能:技术前沿与应用实践
【10月更文挑战第23天】探索人工智能的无限可能:技术前沿与应用实践
|
14天前
|
人工智能 算法 自动驾驶
人工智能的伦理困境:技术发展与社会责任的平衡
在人工智能(AI)技术飞速发展的今天,我们面临着一个前所未有的伦理困境。本文将探讨AI技术带来的挑战,以及如何在技术创新与社会责任之间找到平衡点。我们将从隐私保护、就业影响、算法偏见等方面进行分析,并提出相应的解决方案。
|
15天前
|
人工智能 算法
人工智能浪潮中的伦理困境:我们如何确保技术的道德发展?
【10月更文挑战第22天】在人工智能(AI)技术的迅猛发展中,伴随着巨大的潜力和便利性,也出现了众多伦理问题。从数据隐私到算法偏见,再到自动化带来的失业问题,AI的每一步进步都在考验着人类社会的道德底线。本文将探讨AI技术发展中的主要伦理问题,并讨论如何通过制定标准、教育和跨学科合作来确保AI技术的道德发展。
|
15天前
|
人工智能 算法 测试技术
探索人工智能的边界:从理论到实践的技术感悟###
一场意外的代码崩溃引发的技术觉醒 一次深夜的紧急修复,让我深刻体会到了算法优化与系统稳定性之间微妙的平衡。一行不起眼的代码错误,导致整个智能推荐系统瘫痪,这次经历促使我深入思考技术的本质和开发者的责任。本文将分享这一过程中的启示,并探讨如何通过技术创新来提升系统的鲁棒性和用户体验。 ###
|
16天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮中的编程教育革新
【10月更文挑战第21天】在人工智能飞速发展的今天,编程教育正面临着前所未有的变革。本文通过探讨AI技术对编程教育的深远影响,以及如何利用这些技术优化教学过程,旨在启发读者思考教育的未来方向。我们将一起探索从基础语法学习到复杂算法应用的转变,并讨论如何培养适应未来社会的创新人才。
下一篇
无影云桌面