一致性 hash 算法(consistent hashing)

简介: 一致性 hash 算法(consistent hashing)

一致性 hash 算法(consistent hashing 

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 cache 系统中应用越来越广泛;

1 基本场景

比如你有 N 个 cache 服务器(后面简称 cache ),那么如何将一个对象 object 映射到 N 个 cache 上呢,你很可能会采用类似下面的通用方法计算 object 的 hash 值,然后均匀的映射到到 N 个 cache ;

hash(object)%N

一切都运行正常,再考虑如下的两种情况;

1 一个 cache 服务器 m down 掉了(在实际应用中必须要考虑这种情况),这样所有映射到 cache m 的对象都会失效,怎么办,需要把 cache m 从 cache 中移除,这时候 cache 是 N-1 台,映射公式变成了 hash(object)%(N-1) ;

2 由于访问加重,需要添加 cache ,这时候 cache 是 N+1 台,映射公式变成了 hash(object)%(N+1) ;

1 和 2 意味着什么?这意味着突然之间几乎所有的 cache 都失效了。对于服务器而言,这是一场灾难,洪水般的访问都会直接冲向后台服务器;

再来考虑第三个问题,由于硬件能力越来越强,你可能想让后面添加的节点多做点活,显然上面的 hash 算法也做不到。

  有什么方法可以改变这个状况呢,这就是 consistent hashing...

2 hash 算法和单调性

   Hash 算法的一个衡量指标是单调性( Monotonicity ),定义如下:

  单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。

容易看到,上面的简单 hash 算法 hash(object)%N 难以满足单调性要求。

3 consistent hashing 算法的原理

consistent hashing 是一种 hash 算法,简单的说,在移除 / 添加一个 cache 时,它能够尽可能小的改变已存在 key 映射关系,尽可能的满足单调性的要求。

下面就来按照 5 个步骤简单讲讲 consistent hashing 算法的基本原理。

3.1 环形hash 空间

考虑通常的 hash 算法都是将 value 映射到一个 32 为的 key 值,也即是 0~2^32-1 次方的数值空间;我们可以将这个空间想象成一个首( 0 )尾( 2^32-1 )相接的圆环。

3.2 把对象映射到hash 空间

接下来考虑 4 个对象 object1~object4 ,通过 hash 函数计算出的 hash 值 key 在环上的分布。

hash(object1) = key1;

… …

hash(object4) = key4;

3.3 cache 映射到hash 空间

Consistent hashing 的基本思想就是将对象和 cache 都映射到同一个 hash 数值空间中,并且使用相同的 hash 算法。

假设当前有 A,B 和 C 共 3 台 cache ,他们在 hash 空间中,以对应的 hash 值排列。

hash(cache A) = key A;

… …

hash(cache C) = key C; 

说到这里,顺便提一下 cache 的 hash 计算,一般的方法可以使用 cache 机器的 IP 地址或者机器名作为 hash 输入。

3.4 把对象映射到cache

现在 cache 和对象都已经通过同一个 hash 算法映射到 hash 数值空间中了,接下来要考虑的就是如何将对象映射到 cache 上面了。

在这个环形空间中,如果沿着顺时针方向从对象的 key 值出发,直到遇见一个 cache ,那么就将该对象存储在这个 cache 上,因为对象和 cache 的 hash 值是固定的,因此这个 cache 必然是唯一和确定的。这样不就找到了对象和 cache 的映射方法了吗?!

依然继续上面的例子(参见图 3 ),那么根据上面的方法,对象 object1 将被存储到 cache A 上; object2 和 object3 对应到 cache C ; object4 对应到 cache B ;

3.5 考察cache 的变动

前面讲过,通过 hash 然后求余的方法带来的最大问题就在于不能满足单调性,当 cache 有所变动时, cache 会失效,进而对后台服务器造成巨大的冲击,现在就来分析分析 consistent hashing 算法。

3.5.1 移除 cache

考虑假设 cache B 挂掉了,根据上面讲到的映射方法,这时受影响的将仅是那些沿 cache B 逆时针遍历直到下一个 cache ( cache C )之间的对象,也即是本来映射到 cache B 上的那些对象。

因此这里仅需要变动对象 object4 ,将其重新映射到 cache C 上即可;

3.5.2 添加 cache

再考虑添加一台新的 cache D 的情况,假设在这个环形 hash 空间中, cache D 被映射在对象 object2 和 object3 之间。这时受影响的将仅是那些沿 cache D 逆时针遍历直到下一个 cache ( cache B )之间的对象(它们是也本来映射到 cache C 上对象的一部分),将这些对象重新映射到 cache D 上即可。

因此这里仅需要变动对象 object2 ,将其重新映射到 cache D 上;

4 虚拟节点

考量 Hash 算法的另一个指标是平衡性 (Balance) ,定义如下:

平衡性

  平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。

hash 算法并不是保证绝对的平衡,如果 cache 较少的话,对象并不能被均匀的映射到 cache 上,比如在上面的例子中,仅部署 cache A 和 cache C 的情况下,在 4 个对象中, cache A 仅存储了 object1 ,而 cache C 则存储了 object2 、 object3 和 object4 ;分布是很不均衡的。

为了解决这种情况, consistent hashing 引入了“虚拟节点”的概念,它可以如下定义:

“虚拟节点”( virtual node )是实际节点在 hash 空间的复制品( replica ),一实际个节点对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以 hash 值排列。

仍以仅部署 cache A 和 cache C 的情况为例,在图 4 中我们已经看到, cache 分布并不均匀。现在我们引入虚拟节点,并设置“复制个数”为 2 ,这就意味着一共会存在 4 个“虚拟节点”, cache A1, cache A2 代表了 cache A ; cache C1, cache C2 代表了 cache C ;假设一种比较理想的情况 。

此时,对象到“虚拟节点”的映射关系为:

objec1->cache A2 ; objec2->cache A1 ; objec3->cache C1 ; objec4->cache C2 ;

因此对象 object1 和 object2 都被映射到了 cache A 上,而 object3 和 object4 映射到了 cache C 上;平衡性有了很大提高。

引入“虚拟节点”后,映射关系就从 { 对象 -> 节点 } 转换到了 { 对象 -> 虚拟节点 } 。

“虚拟节点”的 hash 计算可以采用对应节点的 IP 地址加数字后缀的方式。例如假设 cache A 的 IP 地址为 202.168.14.241 。

引入“虚拟节点”前,计算 cache A 的 hash 值:

Hash(“202.168.14.241”);

引入“虚拟节点”后,计算“虚拟节”点 cache A1 和 cache A2 的 hash 值:

Hash(“202.168.14.241#1”);  // cache A1

Hash(“202.168.14.241#2”);  // cache A2

5 小结

Consistent hashing 的基本原理就是这些,具体的分布性等理论分析应该是很复杂的,不过一般也用不到。

目录
相关文章
|
8月前
|
消息中间件 算法 分布式数据库
Raft算法:分布式一致性领域的璀璨明珠
【4月更文挑战第21天】Raft算法是分布式一致性领域的明星,通过领导者选举、日志复制和安全性解决一致性问题。它将复杂问题简化,角色包括领导者、跟随者和候选者。领导者负责日志复制,确保多数节点同步。实现细节涉及超时机制、日志压缩和网络分区处理。广泛应用于分布式数据库、存储系统和消息队列,如Etcd、TiKV。其简洁高效的特点使其在分布式系统中备受青睐。
|
5月前
|
存储 算法 NoSQL
(七)漫谈分布式之一致性算法下篇:一文从根上儿理解大名鼎鼎的Raft共识算法!
Raft通过一致性检查,能在一定程度上保证集群的一致性,但无法保证所有情况下的一致性,毕竟分布式系统各种故障层出不穷,如何在有可能发生各类故障的分布式系统保证集群一致性,这才是Raft等一致性算法要真正解决的问题。
134 11
|
5月前
|
存储 算法 索引
(六)漫谈分布式之一致性算法上篇:用二十六张图一探Raft共识算法奥妙之处!
现如今,大多数分布式存储系统都投向了Raft算法的怀抱,而本文就来聊聊大名鼎鼎的Raft算法/协议!
150 8
|
5月前
|
存储 算法 Java
(五)漫谈分布式之一致性算法篇:谁说Paxos晦涩难懂?你瞧这不一学就会!
没在时代发展的洪流中泯然于众的道理很简单,是因为它们并不仅是空中楼阁般的高大上理论,而是有着完整落地的思想,它们已然成为构建分布式系统不可或缺的底层基石,而本文则来好好聊聊分布式与一致性思想的落地者:Paxos与Raft协议(算法)。
121 6
|
6月前
|
缓存 负载均衡 算法
(四)网络编程之请求分发篇:负载均衡静态调度算法、平滑轮询加权、一致性哈希、最小活跃数算法实践!
先如今所有的技术栈中,只要一谈关于高可用、高并发处理相关的实现,必然会牵扯到集群这个话题,也就是部署多台服务器共同对外提供服务,从而做到提升系统吞吐量,优化系统的整体性能以及稳定性等目的。
109 2
|
8月前
|
缓存 负载均衡 算法
C++如何实现一致性算法
一致性哈希是一种用于分布式系统的负载均衡算法,旨在减少服务器增减导致的数据迁移。当有N台服务器时,通过哈希环将请求均匀分布到每台服务器,每台处理N/1的请求。若使用缓存如Redis,可进一步处理高并发场景。算法将哈希值空间视为环形,服务器和请求哈希后定位到环上,按顺时针方向找到第一台服务器作为负载目标。提供的C++代码实现了MD5哈希函数,以及一致性哈希算法的物理节点、虚拟节点和算法本身,以实现节点的添加、删除和请求映射。
61 1
C++如何实现一致性算法
|
7月前
|
算法 Java
Java中常用hash算法总结
Java中常用hash算法总结
73 0
|
8月前
|
算法 程序员 分布式数据库
分布式一致性必备:一文读懂Raft算法
Raft算法是一种用于分布式系统中复制日志一致性管理的算法。它通过选举领导者来协调日志复制,确保所有节点数据一致。算法包括心跳机制、选举过程、日志复制和一致性保证。当领导者失效时,节点会重新选举,保证高可用性。Raft易于理解和实现,提供强一致性,常用于分布式数据库和协调服务。作者小米分享了相关知识,鼓励对分布式系统感兴趣的读者进一步探索。
1500 0
|
8月前
|
存储 算法 安全
5. raft 一致性算法
5. raft 一致性算法
|
8天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。