Hbase万亿级存储性能优化总结

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 背景       hbase主集群在生产环境已稳定运行有1年半时间,最大的单表region数已达7200多个,每天新增入库量就有百亿条,对hbase的认识经历了懵懂到熟的过程。

背景

      hbase主集群在生产环境已稳定运行有1年半时间,最大的单表region数已达7200多个,每天新增入库量就有百亿条,对hbase的认识经历了懵懂到熟的过程。为了应对业务数据的压力,hbase入库也由最初的单机多线程升级为有容灾机制的分布式入库,为及早发现集群中的问题,还开发了一套对hbase集群服务和应用全面监控的报警系统。总结下hbase优化(针对0.94版本)方面的一些经验也算对这两年hbase工作的一个描述。


服务端

1.hbase.regionserver.handler.count:rpc请求的线程数量,默认值是10,生产环境建议使用100,也不是越大越好,特别是当请求内容很大的时候,比如scan/put几M的数据,会占用过多的内存,有可能导致频繁的GC,甚至出现内存溢出。


2.hbase.master.distributed.log.splitting:默认值为true,建议设为false。关闭hbase的分布式日志切割,在log需要replay时,由master来负责重放


3.hbase.regionserver.hlog.splitlog.writer.threads:默认值是3,建议设为10,日志切割所用的线程数


4.hbase.snapshot.enabled:快照功能,默认是false(不开启),建议设为true,特别是对某些关键的表,定时用快照做备份是一个不错的选择。


5.hbase.hregion.max.filesize默认是10G, 如果任何一个column familiy里的StoreFile超过这个值, 那么这个Region会一分为二,因为region分裂会有短暂的region下线时间(通常在5s以内),为减少对业务端的影响,建议手动定时分裂,可以设置为60G。


6.hbase.hregion.majorcompaction:hbase的region主合并的间隔时间,默认为1天,建议设置为0,禁止自动的major主合并,major合并会把一个store下所有的storefile重写为一个storefile文件,在合并过程中还会把有删除标识的数据删除,在生产集群中,主合并能持续数小时之久,为减少对业务的影响,建议在业务低峰期进行手动或者通过脚本或者api定期进行major合并


7.hbase.hregion.memstore.flush.size:默认值128M,单位字节,一旦有memstore超过该值将被flush,如果regionserver的jvm内存比较充足(16G以上),可以调整为256M。


8.hbase.hregion.memstore.block.multiplier:默认值2,如果一个memstore的内存大小已经超过hbase.hregion.memstore.flush.size *  hbase.hregion.memstore.block.multiplier,则会阻塞该memstore的写操作,为避免阻塞,建议设置为5,如果太大,则会有OOM的风险。如果在regionserver日志中出现"Blocking updates for '<threadName>' on region <regionName> : memstore size <多少M> is >= than blocking <多少M> size"的信息时,说明这个值该调整了。


9.hbase.hstore.compaction.min默认值为3,如果任何一个store里的storefile总数超过该值,会触发默认的合并操作,可以设置5~8,在手动的定期major compact中进行storefile文件的合并,减少合并的次数,不过这会延长合并的时间,以前的对应参数为hbase.hstore.compactionThreshold


10.hbase.hstore.compaction.max:默认值为10,一次最多合并多少个storefile,避免OOM。


11.hbase.hstore.blockingStoreFiles默认为7,如果任何一个store(非.META.表里的store)的storefile的文件数大于该值,则在flush memstore前先进行split或者compact,同时把该region添加到flushQueue,延时刷新,这期间会阻塞写操作直到compact完成或者超过hbase.hstore.blockingWaitTime(默认90s)配置的时间,可以设置为30,避免memstore不及时flush。当regionserver运行日志中出现大量的“Region <regionName> has too many store files; delaying flush up to 90000ms"时,说明这个值需要调整了


12.hbase.regionserver.global.memstore.upperLimit:默认值0.4,regionserver所有memstore占用内存在总内存中的upper比例,当达到该值,则会从整个regionserver中找出最需要flush的region进行flush,直到总内存比例降到该数以下,采用默认值即可。


13.hbase.regionserver.global.memstore.lowerLimit:默认值0.35,采用默认值即可。


14.hbase.regionserver.thread.compaction.small默认值为1,regionserver做Minor Compaction时线程池里线程数目,可以设置为5。


15.hbase.regionserver.thread.compaction.large默认值为1,regionserver做Major Compaction时线程池里线程数目,可以设置为8。


16.hbase.regionserver.lease.period:默认值60000(60s),客户端连接regionserver的租约超时时间,客户端必须在这个时间内汇报,否则则认为客户端已死掉。这个最好根据实际业务情况进行调整


17.hfile.block.cache.size默认值0.25,regionserver的block cache的内存大小限制,在偏向读的业务中,可以适当调大该值,需要注意的是hbase.regionserver.global.memstore.upperLimit的值和hfile.block.cache.size的值之和必须小于0.8。


18.dfs.socket.timeout默认值60000(60s),建议根据实际regionserver的日志监控发现了异常进行合理的设置,比如我们设为900000,这个参数的修改需要同时更改hdfs-site.xml


19.dfs.datanode.socket.write.timeout默认480000(480s),有时regionserver做合并时,可能会出现datanode写超时的情况,480000 millis timeout while waiting for channel to be ready for write这个参数的修改需要同时更改hdfs-site.xml


jvm和垃圾收集参数:

export HBASE_REGIONSERVER_OPTS="-Xms36g -Xmx36g -Xmn1g -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=15 -XX:CMSInitiatingOccupancyFraction=70 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:/data/logs/gc-$(hostname)-hbase.log"


由于我们服务器内存较大(96G),我们给一部分regionserver的jvm内存开到64G,到现在为止,还没有发生过一次full gc,hbase在内存使用控制方面确实下了不少功夫,比如各种blockcache的实现,细心的同学可以看源码。


Client端

1.hbase.client.write.buffer默认为2M,写缓存大小,推荐设置为5M,单位是字节,当然越大占用的内存越多,此外测试过设为10M下的入库性能,反而没有5M好

2.hbase.client.pause:默认是1000(1s),如果你希望低延时的读或者写,建议设为200,这个值通常用于失败重试,region寻找等

3.hbase.client.retries.number:默认值是10,客户端最多重试次数,可以设为11,结合上面的参数,共重试时间71s

4.hbase.ipc.client.tcpnodelay:默认是false,建议设为true,关闭消息缓冲

5.hbase.client.scanner.caching:scan缓存,默认为1,避免占用过多的client和rs的内存,一般1000以内合理,如果一条数据太大,则应该设置一个较小的值,通常是设置业务需求的一次查询的数据条数 

如果是扫描数据对下次查询没有帮助,则可以设置scan的setCacheBlocks为false,避免使用缓存;

6.table用完需关闭,关闭scanner

7.限定扫描范围:指定列簇或者指定要查询的列,指定startRow和endRow

8.使用Filter可大量减少网络消耗

9.通过java多线程入库和查询,并控制超时时间。后面会共享下我的hbase单机多线程入库的代码

10.建表注意事项:

开启压缩

合理的设计rowkey

进行预分区

开启bloomfilter


zookeeper调优

1.zookeeper.session.timeout:默认值3分钟,不可配置太短,避免session超时,hbase停止服务,线上生产环境由于配置为1分钟,如果太长,当regionserver挂掉,zk还得等待这个超时时间(已有patch修复),从而导致master不能及时对region进行迁移。

2.zookeeper数量:建议5个或者7个节点。给每个zookeeper 4G左右的内存,最好有独立的磁盘。

3.hbase.zookeeper.property.maxClientCnxns:zk的最大连接数,默认为300,无需调整。

4.设置操作系统的swappiness为0,则在物理内存不够的情况下才会使用交换分区,避免GC回收时会花费更多的时间,当超过zk的session超时时间则会出现regionserver宕机的误报


hdfs调优

1.dfs.name.dir:namenode的数据存放地址,可以配置多个,位于不同的磁盘并配置一个nfs远程文件系统,这样namenode的数据可以有多个备份

2.dfs.namenode.handler.count:namenode节点RPC的处理线程数,默认为10,可以设置为60

3.dfs.datanode.handler.countdatanode节点RPC的处理线程数,默认为3,可以设置为30

4.dfs.datanode.max.xcieversdatanode同时处理文件的上限,默认为256,可以设置为8192


其它

列族名、column名、rowkey均会存储到hfile中,因此这几项在设计表结构时都尽量短些

regionserver的region数量不要过1000,过多的region会导致产生很多memstore,可能会导致内存溢出,也会增加major compact的耗时


转载请注明原文链接:http://blog.csdn.net/odailidong/article/details/41794403

 

 

 

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
7月前
|
存储 关系型数据库 OLAP
TiDB适用场景解析:海量数据存储与高并发读写的利器
【2月更文挑战第25天】随着大数据时代的到来,海量数据存储和高并发读写成为众多企业面临的挑战。TiDB作为一种高性能、分布式的关系型数据库,以其独特的架构和强大的功能,在多个场景中展现出了卓越的性能。本文将详细探讨TiDB在海量数据存储、高并发读写等场景下的适用情况,分析其在不同业务场景中的优势与应用价值。
|
存储 弹性计算 自然语言处理
PB级数据量背后阿里云 Elasticsearch 的内核优化实践
本文将揭秘阿里云在面对 PB 级数据量挑战下所做的内核优化实践。
5940 0
PB级数据量背后阿里云 Elasticsearch 的内核优化实践
|
23天前
|
SQL 存储 数据处理
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
Apache Doris 物化视图进行了支持。**早期版本中,Doris 支持同步物化视图;从 2.1 版本开始,正式引入异步物化视图,[并在 3.0 版本中完善了这一功能](https://www.selectdb.com/blog/1058)。**
|
2月前
|
存储 监控 分布式数据库
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
本文介绍了百亿级数据存储架构的设计与实现,重点探讨了ElasticSearch和HBase的结合使用。通过ElasticSearch实现快速检索,HBase实现海量数据存储,解决了大规模数据的高效存储与查询问题。文章详细讲解了数据统一接入、元数据管理、数据一致性及平台监控等关键模块的设计思路和技术细节,帮助读者理解和掌握构建高性能数据存储系统的方法。
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
|
3月前
|
存储 JSON 物联网
查询性能提升 10 倍、存储空间节省 65%,Apache Doris 半结构化数据分析方案及典型场景
本文我们将聚焦企业最普遍使用的 JSON 数据,分别介绍业界传统方案以及 Apache Doris 半结构化数据存储分析的三种方案,并通过图表直观展示这些方案的优势与不足。同时,结合具体应用场景,分享不同需求场景下的使用方式,帮助用户快速选择最合适的 JSON 数据存储及分析方案。
查询性能提升 10 倍、存储空间节省 65%,Apache Doris 半结构化数据分析方案及典型场景
|
6月前
|
存储 分布式计算 Hadoop
Hadoop性能优化存储效率
【6月更文挑战第5天】
101 7
|
6月前
|
分布式计算 资源调度 监控
Hadoop性能优化优化元数据管理
【6月更文挑战第6天】
55 2
百万级高并发mongodb集群性能数十倍提升优化实践(上篇)
本文是oppo互联网某百亿级数据量/百万级高并发mongodb集群线上真实优化案例,荣获mongodb中文社区2019年度一等奖。
百万级高并发mongodb集群性能数十倍提升优化实践(上篇)
|
SQL 缓存 分布式计算
Hive千亿级数据倾斜解决方案
Hive千亿级数据倾斜解决方案
541 0
百万级高并发mongodb集群性能数十倍提升优化实践(下篇)
本文是oppo互联网某百亿级数据量/百万级高并发mongodb集群线上真实优化案例,荣获mongodb中文社区2019年度一等奖,上篇地址:https://developer.aliyun.com/article/779084?spm=a2c6h.13148508.0.0.37d34f0e4AZoIg
百万级高并发mongodb集群性能数十倍提升优化实践(下篇)