如何来实现一个Linux内核的系统调用(基于tiny4412开发板)

简介: 关于系统调用,相信学习过操作系统的同学应该都不陌生。那么,什么是系统调用?百度的权威解释如下:点击打开链接 由操作系统实现提供的所有系统调用所构成的集合即程序接口或应用编程接口(Application Programming Interface,API)。

关于系统调用,相信学习过操作系统的同学应该都不陌生。

那么,什么是系统调用?

百度的权威解释如下:

点击打开链接

操作系统实现提供的所有系统调用所构成的集合即程序接口或应用编程接口(Application Programming Interface,API)。是应用程序同系统之间的接口。

         那么我们编程实验过程中使用过哪些系统调用呢?

         当我们要打开一个文件,对这个文件进行读写等操作,我们就需要使用open , read , write , lseek等基本的操作函数API,操作系统中就会根据我们的fd(文件句柄)找到对应的open , read , write , lseek函数,在底层进行调用。

         举一个简单的例子:

基于tiny4412实现的LED驱动和应用控制

http://blog.csdn.net/morixinguan/article/details/50619675

         我们在这个例子中就实现了系统调用:

 fd = open("/dev/test-dev",O_RDWR) ;  
    if(-1 == fd)  
    {  
        printf("open fair!\n");  
        return -1 ;  
    }  
    while(1){  
        val = 0 ;  
        //写write方法就会调用到驱动程序的led_write  
        //最后我们能看到的结果是led灯做流水灯的实现,然后全灭,再周而复始  
        write(fd , &val , 4);  
        sleep(1);  
        val = 1 ;  
        write(fd , &val , 4);  
        sleep(1);  
        val = 2 ;  
        write(fd , &val , 4);  
        sleep(1);  
        val = 3 ;  
        write(fd , &val , 4);  
        sleep(1);  
        val = 5 ;  
        write(fd , &val , 4);  
        sleep(1);  
    }  
在这里,我们通过open函数,打开相应的设备,这里的设备就是/dev/test-dev,然后对设备进行写操作,操作系统就会通过设备节点识别我们到底调用了哪个驱动函数,进而实现一些简单的操作。

       通过上层的open函数,内核的初始化函数已经对这个设备进行了注册操作,于是通过主设备号和次设备号进而调用了相应的驱动函数led_open,接着write函数调用到底层的led_write函数,具体API如下:

//启动函数  
static __init int test_init(void)  
{  
    printk("led_init\n");  
    major = register_chrdev(major, DEV_NAME, &fops);  
    led_config = (volatile unsigned long *)ioremap(GPM4COM , 16);  
    led_dat = led_config + 1 ;    
    return 0;  
}  
//open方法,对LED灯进行初始化  
int led_open(struct inode *inode, struct file *filp)  
{  
    printk("led_open\n");//上层程序对LED进行Open操作的时候会执行这个函数  
    //先对LED的端口进行清0操作  
    *led_config &= ~(0xffff);  
    //将4个IO口16位都设置为Output输出状态  
    *led_config |= (0x1111);  
    return 0;  
}  
//write方法  
int led_write(struct file *filp , const char __user *buf , size_t count , loff_t *f_pos)  
{  
    int val ;   
    //注意,这里是在内核中进行操作,我们需要使用copy_from_user这个函数将用户态的内容拷贝到内核态  
    copy_from_user(&val , buf , count);   
    //以下就是当val是哪个值的时候,led就执行相应的操作,这里不多说  
    switch(val)  
    {  
        case 0 :   
                //对状态寄存器进行赋值,以下雷同  
                printk(KERN_EMERG"led1_on\n");  
                *led_dat &= ~0x1 ;  
                break ;  
        case 1 :  
                printk(KERN_EMERG"led2_on\n");  
                *led_dat &= ~0x2 ;  
                break ;  
        case 2 :  
                printk(KERN_EMERG"led3_on\n");  
                *led_dat &= ~0x4 ;  
                break ;  
        case 3 :  
                printk(KERN_EMERG"led4_on\n");  
                *led_dat &= ~0x8 ;   
                break ;  
        case 4 :  
                printk(KERN_EMERG"ledall_on\n");  
                *led_dat &= ~0xf ;  
                break ;  
        case 5 :   
                printk(KERN_EMERG"ledall_off\n");  
                *led_dat |= 0xf ;  
                break ;  
  
    }  
}  
上述调用过程在前面的字符设备驱动其实已经说得很详细就不再阐述。那么,如果我们现在不调用open,write,read等系统本身有的函数,我们自己来实现一个,如何实现?

     以下我们以实现sys_add()系统调用来进行过程描述,这个API很简单,就是通过上层调用syscall()函数,传入两个参数,使两数相加,具体实现如下:

    1、在内核源代码根目录找到这个文件   arch/arm/kernel/calls.S  ,打开看看:

/* 0 */		CALL(sys_restart_syscall)
		CALL(sys_exit)
		CALL(sys_fork_wrapper)
		CALL(sys_read)
		CALL(sys_write)
/* 5 */		CALL(sys_open)
		CALL(sys_close)
		....
    在这个文件里,声明我们系统需要调用的API,我们把相应的添加到最后面:

    我们把我们需要的添加到最后:
    /*376*/ CALL(sys_add)     这里376表示系统调用号,第376号

   2、在内核源代码根目录找到这个文件   arch/arm/include/asm/unistd.h,打开看看:

    

/*
 * This file contains the system call numbers.
 */

#define __NR_restart_syscall		(__NR_SYSCALL_BASE+  0)
#define __NR_exit			(__NR_SYSCALL_BASE+  1)
#define __NR_fork			(__NR_SYSCALL_BASE+  2)
#define __NR_read			(__NR_SYSCALL_BASE+  3)
#define __NR_write			(__NR_SYSCALL_BASE+  4)
#define __NR_open			(__NR_SYSCALL_BASE+  5)
#define __NR_close			(__NR_SYSCALL_BASE+  6)
....
在__NR这个标号375号后面添加:

#define __NR_add (__NR_SYSCALL_BASE+376)

  3、在内核源代码根目录找到这个文件   arch/arm/kernel/sys_arm.c , 打开看看


在文件的最后添加:

asmlinkage long sys_add(int a, int b)
{
	return a+b;
}


这样,我们就完成了对底层系统调用的实现,接下来,我们来验证我们写的这个程序的结果,看看对不对。

具体如下:

为了方便验证,这里就不再写应用程序,有兴趣可以自己去验证,也很简单。我们这里采用的还是以驱动的形式进行加载。

步骤如下:

1、先在driver目录下创建一个目录:yyx_syscall

依次创建syscall_add.c  Makefile

往syscall_add.c添加代码:

#include<linux/kernel.h>
#include<linux/module.h>
#include<linux/sched.h>
#include<asm/uaccess.h>
#include<linux/compiler.h>
#include<linux/linkage.h>
#include<linux/types.h>
#include<linux/unistd.h>

//在linux内核根目录下找到System.map中sys_add的地址
#define SYS_CALL_ADD_TB 0xc004e30c  
//这里通过一个指针去获取系统函数的入口地址
unsigned long *sys_call_table_add = (unsigned long*)SYS_CALL_ADD_TB; 
asmlinkage long sys_add(int a , int b) ; //在这里定义一个函数

int __init init_addsyscall(void)
{
	int ret ;
	sys_call_table_add[376] = sys_add(1,2); //上面定义的这个函数作为参数传递给这个指针
	ret = sys_call_table_add[376] ;//获取到了参数
        printk("System call add loaded ret:%d\n",ret); //执行结果
        return 0;
}

void __exit exit_addsyscall(void)
{
        printk("System call unlodaded\n");
}

module_init(init_addsyscall);
module_exit(exit_addsyscall);
MODULE_LICENSE("GPL");
Makefile内容如下:

obj-y += syscall_add.o


然后回到内核的根目录下:

make -j4

将编译生成的zImage下载到板子上,运行,我们可以看到串口中打印了相应的数据,是数字3,也就是1+2的结果,验证成功。







目录
相关文章
|
2月前
|
安全 网络协议 Linux
深入理解Linux内核模块:加载机制、参数传递与实战开发
本文深入解析了Linux内核模块的加载机制、参数传递方式及实战开发技巧。内容涵盖模块基础概念、加载与卸载流程、生命周期管理、参数配置方法,并通过“Hello World”模块和字符设备驱动实例,带领读者逐步掌握模块开发技能。同时,介绍了调试手段、常见问题排查、开发规范及高级特性,如内核线程、模块间通信与性能优化策略。适合希望深入理解Linux内核机制、提升系统编程能力的技术人员阅读与实践。
207 1
|
2月前
|
Ubuntu Linux
Ubuntu 23.04 用上 Linux 6.2 内核,预计下放到 22.04 LTS 版本
Linux 6.2 带来了多项内容更新,修复了 AMD 锐龙处理器设备在启用 fTPM 后的运行卡顿问题,还增强了文件系统。
|
2月前
|
Ubuntu Linux
Ubuntu 23.10 现在由Linux内核6.3提供支持
如果你想在你的个人电脑上测试一下Ubuntu 23.10的最新开发快照,你可以从官方下载服务器下载最新的每日构建ISO。然而,请记住,这是一个预发布版本,所以不要在生产机器上使用或安装它。
|
2月前
|
传感器 监控 Ubuntu
10 月发布,Ubuntu 23.10 已升级到 Linux Kernel 6.3 内核
硬件方面,Linux 6.3 引入了在 HID 中引入了原生的 Steam Deck 控制器接口,允许罗技 G923 Xbox 版赛车方向盘在 Linux 上运行;改善 8BitDo Pro 2 有线控制器的行为;并为一系列华硕 Ryzen 主板添加传感器监控。
|
2月前
|
Ubuntu Linux
Ubuntu24.04LTS默认采用Linux 6.8内核,实验性版本可通过PPA获得
IT之家提醒,当下的 Ubuntu 23.10 也是一个“短期支持版本”,该版本将在今年 7 月终止支持,而今年 4 月推出的 Ubuntu 24.04 LTS 长期支持版本将获得 5 年的更新支持。
|
2月前
|
监控 Ubuntu Linux
什么Linux,Linux内核及Linux操作系统
上面只是简单的介绍了一下Linux操作系统的几个核心组件,其实Linux的整体架构要复杂的多。单纯从Linux内核的角度,它要管理CPU、内存、网卡、硬盘和输入输出等设备,因此内核本身分为进程调度,内存管理,虚拟文件系统,网络接口等4个核心子系统。
198 0
|
2月前
|
Web App开发 缓存 Rust
|
2月前
|
Ubuntu 安全 Linux
Ubuntu 发行版更新 Linux 内核,修复 17 个安全漏洞
本地攻击者可以利用上述漏洞,攻击 Ubuntu 22.10、Ubuntu 22.04、Ubuntu 20.04 LTS 发行版,导致拒绝服务(系统崩溃)或执行任意代码。
|
2月前
|
Ubuntu 机器人 物联网
Linux Ubuntu 22.04 LTS 测试版实时内核已可申请
请注意,在启用实时内核后您需要手动配置 grub 以恢复到原始内核。更多内容请参考: