人工智能在医疗领域的不同层次

简介:

人工智能的最大特点是高效的计算和精准的分析与决策,刚好是当前医疗的痛点所在,因而人工智能在医疗行业有着广阔的发展空间,主要的应用领域有:

智能医疗

(1)基因测序;(2)药物发现;(3)医疗智能语音;(4)医疗智能视觉;(5)医疗机器人;(6)可穿戴设备;(7)远程医疗;(8)智能决策;(9)智能诊断等。

人工智能在医疗领域中可划分归类为:计算智能、感知智能和认知智能,人工智能在医疗领域的完美应用场景是感知智能、计算智能、认知智能互相协同,形成一个完整的智能闭环。

1.智能医疗之——计算智能:

计算智能是人工智能借助云计算对大数据的高效智能计算与分析,是人工智能的基础环节,也是认知智能和感知智能的前提和保障,最为典型的应用就是基因测序和药物发现。

基因测序:指分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤的(G)排列方式。基因测序是一个典型的,依靠计算智能来发现人的个性化的例子,它能锁定个人病变基因,提前预防和治疗,预测罹患多种疾病的可能性,个体的行为特征,如癌症、白血病、运动能力、酒量等。基因测序相关产品和技术已由实验室研究演变到临床使用,因此基因测序技术,将会是下一个改变世界的技术。

药物发现:智能计算利用大数据为当代药物发现带来了空前的机会,它允许科学家在以前难以想象的时域和微观尺度探索化学多样性空间、发现药物靶标(设计药物分子的基础)、模拟受体-配体的相互作用(可以提前预测候选药物在正常人群以及患者体内的ADMET(药物的吸收、分配、代谢、排泄和毒性))、药物晶型分析以及中草药的配方问题。

以化合物的筛选为例,其包括合成—结构优化—结构改造的循环过程,一般这个过程是从化合物数据库中选取海量的化合物结构做初步分析,再通过生物实验手段筛选出初步有活性的化合物——先导化合物,结合活性数据和化合物结构得到初步的构效关系分析,不断优化化合物的结构;因此,药物发现中最重要的是对于海量数据的整合、分析与解读,从海量数据中快速地找到那些真正具有价值的成分,或通过对于数据的分析,及时总结出规律,缩短药物发现的时间。

图3.全球致力于运用人工智能技术助力药品临床前研发的公司

即使在药品立项时,借助计算智能对多种来源的海量数据信息的查询和分析,提高新药立项决策效率。这些数据就包括:疾病信息(疾病分类、发病率、死亡率、疾病趋势、目前的治疗手段及花费和风险等)、市场调查数据(全球的药物经济数据和上市信息)、专利数据(药品在全球大部分地区受到专利保护,其中包括化合物专利、制剂专利、应用专利等在药品立项前需要对相关专利做好侵权分析、技术分析、权利要求分析、法律状态分析等深入调研工作)。

2.智能医疗之——感知智能:

感知智能层是信息采集和信息控制的执行环节,也是潜在市场空间最大的环节,我们要关注新的技术和趋势。感知智能在医疗方面的应用主要用来解决人际交互问题包括:医疗智能视觉、医疗智能语音、可穿戴医疗设备等。

医疗智能语音:医疗智能语音是基于语音识别、语音合成、自然语言处理NLP等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验。通过语音识别和疾病数据分析,可实现机器诊断疾病。

医疗是专业度更高的领域,有很多专业术语和专业技能需要机器去学习,只有通过海量的学习,人工智能诊断疾病才能更准确、更快捷、更安全,使得人机交互与智能诊断能成为现实。目前医疗智能语音主要用于医生电子病历的生成,以云知声的智能语音产品为例,在临床和科技室场景支持中,在神经科、免疫内科、血液科、普通内科等的语音识别准确率达到95%以上,辅以云端语义校正技术后,整体识别率接近100%。

医疗智能视觉:医疗智能视觉分析是智能视觉在医疗领域的应用。智能视觉在医疗行业的应用的要求要比其他行业更高,其最广泛的应用就是智能图像识别,通过智能视觉的图像识别技术,计算机可以分析病人的医学成像如X片检查情况,通过更精准的智能识别,给出更准确的判断。目前,智能视觉在对图像的检测效率和精度两个方面,都可以做得比专业医生更好,除此之外,还可以减少人为操作的误判率,克服人性的弱点。

医疗机器人:感应机器人系统是用于医院、诊所的医疗或辅助医疗的感应机器手臂或机器人,因为应用领域的不同,医疗机器人的种类很多,有临床医疗用机器人、护理机器人、医用教学机器人和为残疾人康复服务机器人等。

最为典型的代表就是美国直觉外科公司的达.芬奇手术机器人,其特点是,通过机器人系统获取更加精准的手术信息,同时,操作过程中拥有着比人手更加灵活精准的守护治疗,如今达.芬奇手术机器人已经在全世界范围内开始应用,并且已经为数以万计的患者提供服务,实现了全球范围的商业化。

如今,全球各地的研究人员正在开发外科机器人来解决那些通常具有侵入性且耗时的手术。MedicalDesign网站近日盘点了6款正在革新手术和医疗保健的外科机器人,包括通过一个直径不到1毫米的小孔在眼睛内操作的视网膜手术机器人、可以完成外科医生难以手工操作的外科手术的人工耳蜗植入机器人、轻松定位静脉并采血的机器人VenousPro、精度达亚毫米级且可广泛应用于脊柱全节段(颈、胸、腰、骶)、骨盆、四肢等部位螺钉内固定术的骨科手术机器人Phecda(天玑)、将手术时间从2小时缩短至2分钟半的颅骨手术机器人、以及缝合软组织速度是标准缝合程序50倍的缝合机器人。

可穿戴医疗设备:可穿戴的医疗设备是可穿戴设备的一种,其重点是偏向于医疗数据的采集,它集成了多种无线传感器,可以测量环境指标如:空气湿度、温度、亮度、辐射强度等以及人的生理指标如:体温、心跳脉搏、呼吸、血压、血糖等,并通过无线网络将测量数据发送给接收的云端。

未来可穿戴医疗设备将会集成更多、精度更高的无线传感器,可以实时获取人身的各项生理数据,进而可以更好地配合医疗。

国外比较有影响力的可穿戴科技网站WTVOX整理的“2016十大医疗可穿戴设备”就包括专门为患有癫痫的病人设计的Embrace智能腕带、女性健康检测的ScanaduUrine尿液检测工具、专门检测乳腺癌的的iTbra女性智能内衣、被用于心力衰竭和高血压患者的可吞服性智能药丸Helius、用于患有背部或者下背部疼痛以及相关疾病人群的背部可穿戴医疗设备Valedo、专门为哮喘、充血性心力衰竭和慢性阻塞性肺疾病患者设计的WRISTOX2腕式脉冲血氧仪、为患有慢性疼痛疾病人群设计的QUELL疼痛缓解仪、助人们更好实现运动或医疗康复训练的TMG-BMCMC肌肉传感器、为慢性疾病用户提供的Bodytel家庭智能诊断系统以及美敦力的MiniMed530G人工胰腺系统。

远程医疗:远程医疗是指通过计算机技术、遥感、遥测、遥控技术为依托,充分发挥大医院或专科医疗中心的医疗技术和医疗设备优势,提高诊断与医疗水平、降低医疗开支、满足广大人民群众保健需求的一项全新的医疗服务。

远程医疗的前提是远程感知设备能够感知到足够多的、精准的医疗数据,并通过远程传递的方式送到医生面前,引领医生进行疾病诊断和治疗。目前,远程医疗技术已经从最初的电视监护、电话远程诊断发展到利用高速网络进行数字、图像、语音的综合传输,并且实现了实时的语音和高清晰图像的交流,为未来更进一步远程医疗的应用提供了先行条件。

3.智能医疗之——认知智能:

医疗认知智能是人工智能在医疗领域应用的高级阶段。其特点在于其机器能够“理解”非结构化数据,就包括语言、图像、视频等,认知智能的核心能力实际上是机器拥有人类的某些能力,与人类相比,其优点是计算能力更加高效而且永不会疲劳。认知智能在医疗领域应用时,一方面可以进行医疗相关信息的管理,另一方面又可以参与疾病的诊断与治疗。

医疗智能决策:智能决策是建立在计算智能与感知智能的基础上做出深层次的智能决策,高效的医疗智能决策依赖于感知智能获取的精准信息、又依赖于计算智能的高效计算,感知智能和计算智能都是智能决策的前提条件。相较人的决策而言,医疗智能决策通过对医疗大数据的智能分析,在多条路径中高效选择找出最佳的决策路径,能有效提高医疗效率、降低医疗成本。智能决策可以用于医院医疗信息的管理,又可用于医疗方案的制定。

智能诊断:智能诊断也是建立在计算智能与感知智能的基础上做出深层次的医疗诊断。智能诊断在医疗诊断过程中能给出具体治疗方案,其方案是基于针对性的病情诊断结果,并对这种病情提出最佳方案建议和效果说明。

智能诊断的前提是要具备认知智能的“学习”与“思考”能力。以沃森医生为例,IBMWatson可以在17秒内阅读3469本医学专著,248000篇论文,69种治疗方案,61540次试验数据,106000份临床报告,通过海量汲取医学知识,包括300多份医学期刊、200多种教科书及近1000万页文字,因而IBMWatson在短时间内通过学习迅速成为肿瘤专家;除了学习能力外,还能“思考”,有效地将学到的海量知识利用起来,进而可以像专家一样提供医疗建议和咨询。本文由朗锐慧康编辑整理(www.lrioh.com),如有侵权请联系本站。

相关文章
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
27 0
|
16天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
23 0
|
2天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
2天前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
46 10
|
9天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
37 9
|
15天前
|
数据采集 机器学习/深度学习 人工智能
AI在医疗诊断中的应用与挑战
随着人工智能(AI)技术的飞速发展,其在医疗领域的应用也日益广泛。从辅助医生进行疾病诊断到提供个性化治疗方案,AI技术正在改变着传统医疗模式。然而,AI在医疗诊断中的应用并非一帆风顺,面临着数据质量、模型可解释性、法规政策等一系列挑战。本文将从AI在医疗诊断中的具体应用场景出发,探讨其面临的主要挑战及未来发展趋势。
|
12天前
|
机器学习/深度学习 数据采集 人工智能
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####
|
12天前
|
机器学习/深度学习 人工智能 安全
AI技术在医疗领域的应用与挑战
本文将探讨AI技术在医疗领域的应用及其带来的挑战。我们将介绍AI技术如何改变医疗行业的面貌,包括提高诊断准确性、个性化治疗方案和预测疾病风险等方面。同时,我们也将讨论AI技术在医疗领域面临的挑战,如数据隐私和安全问题、缺乏标准化和监管框架以及医生和患者对AI技术的接受程度等。最后,我们将通过一个代码示例来展示如何使用AI技术进行疾病预测。
27 2
|
16天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用##
本文探讨了人工智能(AI)技术在医疗领域的应用,包括其在疾病诊断、治疗计划制定、患者监护和健康管理等方面的潜力。通过分析AI如何帮助医生更准确地诊断疾病,提高治疗效果,以及降低医疗成本,我们可以预见到一个更加智能、高效和人性化的医疗未来。 ##
|
13天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用与前景
本文探讨了人工智能(AI)技术在医疗领域的应用,包括疾病诊断、治疗方案制定、药物研发等方面。通过对现有研究成果的梳理,分析了AI技术在提高医疗服务效率、降低医疗成本、改善患者体验等方面的潜力。同时,也指出了AI技术在医疗领域面临的挑战,如数据隐私保护、伦理道德问题等,并展望了未来的发展趋势。
55 2