【转】IO - 同步,异步,阻塞,非阻塞 (亡羊补牢篇)

简介: 概念很重要,一定要掌握。实践都是基于它们的哟 ~~~~~~~~~~~~~~~~~ http://blog.csdn.net/historyasamirror/article/details/5778378 Stevens在文章中一共比较了五种IO Model:    blocking IO    nonblocking IO    IO multiplexing    signal driven IO    asynchronous IO由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

概念很重要,一定要掌握。实践都是基于它们的哟

~~~~~~~~~~~~~~~~~

http://blog.csdn.net/historyasamirror/article/details/5778378

Stevens在文章中一共比较了五种IO Model:
    blocking IO
    nonblocking IO
    IO multiplexing
    signal driven IO
    asynchronous IO
由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

~~~~~~~~~~~~~~~~

先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
    A synchronous I/O operation causes the requesting process to be blocked until that I/O operationcompletes;
    An asynchronous I/O operation does not cause the requesting process to be blocked;
 
两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

各个IO Model的比较如图所示:

经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

最后,再举几个不是很恰当的例子来说明这四个IO Model:
有A,B,C,D四个人在钓鱼:
A用的是最老式的鱼竿,所以呢,得一直守着,等到鱼上钩了再拉杆;
B的鱼竿有个功能,能够显示是否有鱼上钩,所以呢,B就和旁边的MM聊天,隔会再看看有没有鱼上钩,有的话就迅速拉杆;
C用的鱼竿和B差不多,但他想了一个好办法,就是同时放好几根鱼竿,然后守在旁边,一旦有显示说鱼上钩了,它就将对应的鱼竿拉起来;
D是个有钱人,干脆雇了一个人帮他钓鱼,一旦那个人把鱼钓上来了,就给D发个短信。

目录
相关文章
|
3月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
在Python的并发编程世界中,没有万能的解决方案,只有最适合特定场景的方法。希望本文能够为你拨开迷雾,找到那条通往高效并发编程的光明大道。
54 2
|
4月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
58 4
|
3月前
|
存储 缓存 算法
如何优化阻塞IO的性能?
【10月更文挑战第6天】如何优化阻塞IO的性能?
67 5
|
3月前
|
数据库
同步IO模型是一种常见的编程模型
【10月更文挑战第5天】同步IO模型是一种常见的编程模型
25 2
|
4月前
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
在数据驱动时代,高效处理大规模数据和高并发请求至关重要。Python凭借其优雅的语法和强大的库支持,成为开发者首选。本文将介绍Python中的并发与异步编程,涵盖并发与异步的基本概念、IO密集型任务的并发策略、CPU密集型任务的并发策略以及异步IO的应用。通过具体示例,展示如何使用`concurrent.futures`、`asyncio`和`multiprocessing`等库提升程序性能,帮助开发者构建高效、可扩展的应用程序。
208 0
|
5月前
|
C# 开发者 设计模式
WPF开发者必读:命令模式应用秘籍,轻松简化UI与业务逻辑交互,让你的代码更上一层楼!
【8月更文挑战第31天】在WPF应用开发中,命令模式是简化UI与业务逻辑交互的关键技术,通过将请求封装为对象,实现UI操作与业务逻辑分离,便于代码维护与扩展。本文介绍命令模式的概念及实现方法,包括使用`ICommand`接口、`RelayCommand`类及自定义命令等方式,并提供示例代码展示如何在项目中应用命令模式。
65 0
|
5月前
|
Ubuntu Linux
内核实验(九):添加IO驱动的阻塞读写功能
本文通过修改内核模块代码,介绍了如何在Linux内核中为IO驱动添加阻塞读写功能,使用等待队列和条件唤醒机制来实现读写操作的阻塞和非阻塞模式,并在Qemu虚拟机上进行了编译、部署和测试。
33 0
|
5月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
6月前
|
Java 大数据
解析Java中的NIO与传统IO的区别与应用
解析Java中的NIO与传统IO的区别与应用
|
4月前
|
Java 大数据 API
Java 流(Stream)、文件(File)和IO的区别
Java中的流(Stream)、文件(File)和输入/输出(I/O)是处理数据的关键概念。`File`类用于基本文件操作,如创建、删除和检查文件;流则提供了数据读写的抽象机制,适用于文件、内存和网络等多种数据源;I/O涵盖更广泛的输入输出操作,包括文件I/O、网络通信等,并支持异常处理和缓冲等功能。实际开发中,这三者常结合使用,以实现高效的数据处理。例如,`File`用于管理文件路径,`Stream`用于读写数据,I/O则处理复杂的输入输出需求。
281 12
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等