用with实现python的threading,新鲜啊

简介: 哈哈,2.5以后可用。自动加锁释放,如同操作文件打开关闭一样。 #!/usr/bin/env python # -*- coding: utf-8 -*- import threading import logging logging.

哈哈,2.5以后可用。自动加锁释放,如同操作文件打开关闭一样。

#!/usr/bin/env python
# -*- coding: utf-8 -*-


import threading
import logging

logging.basicConfig(level=logging.DEBUG,
                   format='(%(threadName)-10s)%(message)s', )

def threading_with(statement):
    with statement:
        logging.debug('%s acquired via with' %statement)

def threading_not_with(statement):
    statement.acquire()
    try:
        logging.debug('%s acquired directly' % statement)
    finally:
        statement.release()

if __name__ == "__main__":
    lock = threading.Lock()
    rlock = threading.RLock()
    condition = threading.Condition()
    mutex = threading.Semaphore(1)
    threading_synchronization_list = \
                                   [lock, rlock, condition, mutex]

    for statement in threading_synchronization_list :
        t1 = threading.Thread(target=threading_with,
        args=(statement,))
        t2 = threading.Thread(target=threading_not_with,
        args=(statement,))
        t1.start()
        t2.start()
        t1.join()
        t2.join()
    
        

目录
相关文章
|
10月前
|
安全 Python
Python并发编程必备技能:掌握threading模块,让你的代码跑得更快!
【8月更文挑战第22天】Python并发编程采用多线程技术实现任务的同时执行。利用`threading`模块可轻松管理和创建线程。通过`Thread`类实例化线程并用`start()`方法启动。线程同步通过`Lock`确保资源访问互斥,或用`Semaphore`控制并发数量。线程间通信则可通过`Queue`安全传递数据,实现生产者-消费者模式等功能。这些工具有效避免了竞态条件,确保了程序的正确性和效率。
141 1
|
8月前
|
Python
Python中threading模块的常用方法和示例
Python 的 `threading` 模块提供了多线程编程的能力,允许同时执行多个线程。主要类包括 `Thread`、`Lock` 和 `Condition`。`Thread` 类用于创建和管理线程,`Lock` 用于同步线程,防止资源竞争,`Condition` 用于线程间协调。本文介绍了这些类的常用方法及示例代码,帮助你更好地理解和使用多线程编程。
98 0
|
10月前
|
数据采集 Java Python
Python并发编程:多线程(threading模块)
Python是一门强大的编程语言,提供了多种并发编程方式,其中多线程是非常重要的一种。本文将详细介绍Python的threading模块,包括其基本用法、线程同步、线程池等,最后附上一个综合详细的例子并输出运行结果。
|
10月前
|
数据采集 Java Python
Python并发编程:多线程(threading模块)
本文详细介绍了Python的threading模块,包括线程的创建、线程同步、线程池的使用,并通过多个示例展示了如何在实际项目中应用这些技术。通过学习这些内容,您应该能够熟练掌握Python中的多线程编程,提高编写并发程序的能力。 多线程编程可以显著提高程序的并发性能,但也带来了新的挑战和问题。在使用多线程时,需要注意避免死锁、限制共享资源的访问,并尽量使用线程池来管理和控制线程。
|
11月前
|
数据处理 调度 Python
Python并发编程实战指南:深入理解线程(threading)与进程(multiprocessing)的奥秘,打造高效并发应用!
【7月更文挑战第8天】Python并发编程探索:使用`threading`模块创建线程处理任务,虽受限于GIL,适合I/O密集型工作。而`multiprocessing`模块通过进程实现多核利用,适用于CPU密集型任务。通过实例展示了线程和进程的创建与同步,强调了根据任务类型选择合适并发模型的重要性。
110 5
|
11月前
|
数据库 数据安全/隐私保护 C++
Python并发编程实战:线程(threading)VS进程(multiprocessing),谁才是并发之王?
【7月更文挑战第10天】Python并发对比:线程轻量级,适合I/O密集型任务,但受GIL限制;进程绕过GIL,擅CPU密集型,但通信成本高。选择取决于应用场景,线程利于数据共享,进程利于多核利用。并发无“王者”,灵活运用方为上策。
216 2
|
11月前
|
API 数据库 C++
震惊!Python并发编程大揭秘:线程(threading)VS进程(multiprocessing),你选对了吗?
【7月更文挑战第8天】在Python并发编程中,线程适合I/O密集型任务,如实时订单处理,而进程适合CPU密集型任务,如商品信息同步。线程利用轻量级并发,处理I/O等待时切换成本低;进程通过multiprocessing模块充分利用多核CPU。根据任务类型选择合适工具,能提升效率并优化系统性能。理解和运用线程与进程,是解决并发问题的关键。
84 0
Python 内置库 多线程threading使用讲解
本文介绍Python中的线程基础。首先展示了单线程的基本使用,然后通过`threading`模块创建并运行多线程。示例中创建了两个线程执行不同任务,并使用`active_count()`和`enumerate()`检查线程状态。接着讨论了守护线程,主线程默认等待所有子线程完成,但可设置子线程为守护线程使其随主线程一同结束。`join()`方法用于主线程阻塞等待子线程执行完毕,而线程池能有效管理线程,减少频繁创建的开销,Python提供`ThreadPoolExecutor`进行线程池操作。最后提到了GIL(全局解释器锁),它是CPython的机制,限制了多线程并行执行的能力,可能导致性能下降。
|
人工智能 安全 Java
Python 多线程编程实战:threading 模块的最佳实践
Python 多线程编程实战:threading 模块的最佳实践
335 5
|
Python
Python中的多线程可以使用`threading`模块来实现。以下是一个简单的多线程示例,该示例启动两个线程并让它们分别打印数字。
在Python中,使用`threading`模块可实现多线程。以下代码展示了一个简单的例子:创建两个线程`t1`和`t2`,分别打印1-6和6-11的数字。通过`target`参数指定执行函数`print_numbers`,`args`传递参数。启动线程后,用`join()`确保线程执行完毕。注意,多线程访问共享资源可能引发数据竞争,需用锁进行同步控制。
87 0

热门文章

最新文章

推荐镜像

更多