JAVA多线程实现的三种方式

简介: JAVA多线程实现  JAVA多线程实现方式主要有三种:继承Thread类、实现Runnable接口、使用ExecutorService、Callable、Future实现有返回结果的多线程。

JAVA多线程实现

  JAVA多线程实现方式主要有三种:继承Thread类、实现Runnable接口、使用ExecutorService、Callable、Future实现有返回结果的多线程。其中前两种方式线程执行完后都没有返回值,只有最后一种是带返回值的。

  前两种大家应该都熟悉,第三种不太常用,但有时面试时会问到所以我在这里写下。

继承Thread类实现多线程

  继承Thread类的方法尽管被我列为一种多线程实现方式,但Thread本质上也是实现了Runnable接口的一个实例,它代表一个线程的实例,并且,启动线程的唯一方法就是通过Thread类的start()实例方法。start()方法是一个native方法,它将启动一个新线程,并执行run()方法。这种方式实现多线程很简单,通过自己的类直接extend Thread,并复写run()方法,就可以启动新线程并执行自己定义的run()方法。例如:

public class MyThread extends Thread {  
  public void run() {  
   System.out.println("线程的run()方法");  
  }  
}  

 在合适的地方启动线程如下

//创建两个线程,用start启动线程
MyThread myThread1 = new MyThread();  
MyThread myThread2 = new MyThread();  
myThread1.start();  
myThread2.start();  

实现Runnable接口方式实现多线程

  如果自己的类已经extends另一个类,就无法直接extends Thread,此时,必须实现一个Runnable接口,在写代码时我们也一般尽量使用接口,代码如下:

public class MyThread extends OtherClass implements Runnable {  
  public void run() {  
    System.out.println("线程的run()方法");  
  }  
}  

  为了启动MyThread,需要首先实例化一个Thread,并传入自己的MyThread实例:

//先创建一个MyThread类,然后把类传给线程类Thread,创建线程成功
MyThread myThread = new MyThread();  
Thread thread = new Thread(myThread);  
thread.start();  

使用ExecutorService、Callable、Future实现有返回结果的多线程

  ExecutorService、Callable、Future这个对象实际上都是属于Executor框架中的功能类。

  Executor框架:指java 5中引入的一系列并发库中与executor相关的一些功能类,其中包括线程池,Executor,Executors,ExecutorService,CompletionService,Future,Callable等。

 注:并发编程的一种编程方式是把任务拆分为一些列的小任务,即Runnable,然后在提交给一个Executor执行,Executor.execute(Runnalbe) 。Executor在执行时使用内部的线程池完成操作。

  返回结果的线程是在JDK1.5中引入的新特征,确实很实用,有了这种特征我就不需要再为了得到返回值而大费周折。可返回值的任务必须实现Callable接口,类似的,无返回值的任务必须Runnable接口。执行Callable任务后,可以获取一个Future的对象,在该对象上调用get就可以获取到Callable任务返回的Object了,再结合线程池接口ExecutorService就可以实现传说中有返回结果的多线程了。

例子:

/** 
* 有返回值的线程 
*/  
@SuppressWarnings("unchecked")  
public class Test {  
    public static void main(String[] args) throws ExecutionException,InterruptedException {  
       System.out.println("----程序开始运行----");  
       Date date1 = new Date();  

       int taskSize = 5;  
       // 创建一个线程池  
       ExecutorService pool = Executors.newFixedThreadPool(taskSize);  

       // 创建多个有返回值的任务  
       List<Future> list = new ArrayList<Future>();  
       for (int i = 0; i < taskSize; i++) {  
            Callable c = new MyCallable(i + " ");  
            // 执行任务并获取Future对象  
            Future f = pool.submit(c);  
            //call方法的返回结果输出 f.get().toString()
            // System.out.println(">>>" + f.get().toString());  
            list.add(f);  
       } 

       // 关闭线程池  
       pool.shutdown();  

       // 获取所有并发任务的运行结果  
       for (Future f : list) {  
            // 从Future对象上获取任务的返回值,并输出到控制台  
            System.out.println(">>>" + f.get().toString());  
       }  

       Date date2 = new Date();  
       System.out.println("----程序结束运行----,程序运行时间【"  
         + (date2.getTime() - date1.getTime()) + "毫秒】");  
    }  
}  

class MyCallable implements Callable<Object> {  
    private String taskNum;  

    MyCallable(String taskNum) {  
        this.taskNum = taskNum;  
    }  

public Object call() throws Exception {  
   System.out.println(">>>" + taskNum + "任务启动");  
   Date dateTmp1 = new Date();  
   Thread.sleep(1000);  
   Date dateTmp2 = new Date();  
   long time = dateTmp2.getTime() - dateTmp1.getTime();  
   System.out.println(">>>" + taskNum + "任务终止");  
   return taskNum + "任务返回运行结果,当前任务时间【" + time + "毫秒】";  
  }  
}  

 上述代码中Executors类,提供了一系列工厂方法用于创先线程池,返回的线程池都实现了ExecutorService接口。

  • 创建固定数目线程的线程池。
public static ExecutorService newFixedThreadPool(int nThreads) 
  • 创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。
public static ExecutorService newCachedThreadPool() 
  • 创建一个单线程化的Executor。
public static ExecutorService newSingleThreadExecutor() 
  • 创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) 

  ExecutoreService提供了submit()方法,传递一个Callable,或Runnable,返回Future。如果Executor后台线程池还没有完成Callable的计算,这调用返回Future对象的get()方法,会阻塞直到计算完成。

相关文章
|
1月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
119 1
|
1月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
133 1
|
2月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
Java 数据库 Spring
123 0
|
2月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
193 16
|
3月前
|
缓存 并行计算 安全
关于Java多线程详解
本文深入讲解Java多线程编程,涵盖基础概念、线程创建与管理、同步机制、并发工具类、线程池、线程安全集合、实战案例及常见问题解决方案,助你掌握高性能并发编程技巧,应对多线程开发中的挑战。
|
3月前
|
数据采集 存储 前端开发
Java爬虫性能优化:多线程抓取JSP动态数据实践
Java爬虫性能优化:多线程抓取JSP动态数据实践
|
4月前
|
Java API 调度
从阻塞到畅通:Java虚拟线程开启并发新纪元
从阻塞到畅通:Java虚拟线程开启并发新纪元
345 83
|
4月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
186 0
|
4月前
|
存储 Java 调度
Java虚拟线程:轻量级并发的革命性突破
Java虚拟线程:轻量级并发的革命性突破
322 83